在高温应用中裁剪新型MAX相硼复合材料的热学和热机械特性。

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Md Shahinoor Alam, Mohammad Asaduzzaman Chowdhury, Md Saiful Islam, Md Moynul Islam, Tasmina Khandaker, M A Gafur, Dipa Islam
{"title":"在高温应用中裁剪新型MAX相硼复合材料的热学和热机械特性。","authors":"Md Shahinoor Alam, Mohammad Asaduzzaman Chowdhury, Md Saiful Islam, Md Moynul Islam, Tasmina Khandaker, M A Gafur, Dipa Islam","doi":"10.1039/d5na00063g","DOIUrl":null,"url":null,"abstract":"<p><p>MAX phase composites are gaining great attention for their excellent attributes in high-temperature applications like aerospace, energy, and nuclear industries. However, tailoring their thermal and thermomechanical properties for better performance at elevated temperatures remains a significant challenge. Therefore, the aim of this study is to synthesize novel MAX phase boron (B) composites for high-temperature applications. Titanium aluminum nitride (Ti<sub>4</sub>AlN<sub>3</sub>) and titanium aluminum carbide (Ti<sub>3</sub>AlC<sub>2</sub>) MAX phase reinforced B composites were prepared using the hot-pressing method at three different sintering temperatures: 1050 °C, 1250 °C, and 1325 °C. Thermal stability, thermal conductivity and thermomechanical properties of MAX phase composites were investigated through thermogravimetric analysis (TGA), hot disk method, and thermomechanical analyzer (TMA). The results reveal that thermal stability and thermal conductivity increased with rising sintering temperatures for both MAX composites. This is because higher sintering temperatures enhance atomic diffusion, densification, and particle bonding, leading to improved thermal stability and thermal conductivity of the composite. Moreover, the thermal stability of the Ti<sub>4</sub>AlN<sub>3</sub> composite is higher than that of the Ti<sub>3</sub>AlC<sub>2</sub> composites. At 1325 °C sintering, Ti<sub>3</sub>AlC<sub>2</sub> composites remain stable up to 600 °C with 1.4% weight loss, while the Ti<sub>4</sub>AlN<sub>3</sub> composite shows better stability up to 700 °C with only 0.6% weight loss. These MAX phase composites also show varying coefficients of thermal expansion (CTEs) at different temperature ranges, indicating that their thermal expansion properties are highly dependent on sintering temperatures. Both MAX composites exhibit lower overall CTEs at higher sintering temperatures, suggesting enhanced thermal stability. The negative CTEs at higher sintering temperatures in both materials suggest unusual thermal behavior, possibly due to phase transitions, secondary phase formation, or microstructural changes. These findings offer valuable insights into their thermal stability and decomposition characteristics, which are vital for high-temperature applications in electronics, optoelectronics, and semiconductor devices.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974559/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tailoring the thermal and thermomechanical characteristics of novel MAX phase boron composites in high-temperature applications.\",\"authors\":\"Md Shahinoor Alam, Mohammad Asaduzzaman Chowdhury, Md Saiful Islam, Md Moynul Islam, Tasmina Khandaker, M A Gafur, Dipa Islam\",\"doi\":\"10.1039/d5na00063g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MAX phase composites are gaining great attention for their excellent attributes in high-temperature applications like aerospace, energy, and nuclear industries. However, tailoring their thermal and thermomechanical properties for better performance at elevated temperatures remains a significant challenge. Therefore, the aim of this study is to synthesize novel MAX phase boron (B) composites for high-temperature applications. Titanium aluminum nitride (Ti<sub>4</sub>AlN<sub>3</sub>) and titanium aluminum carbide (Ti<sub>3</sub>AlC<sub>2</sub>) MAX phase reinforced B composites were prepared using the hot-pressing method at three different sintering temperatures: 1050 °C, 1250 °C, and 1325 °C. Thermal stability, thermal conductivity and thermomechanical properties of MAX phase composites were investigated through thermogravimetric analysis (TGA), hot disk method, and thermomechanical analyzer (TMA). The results reveal that thermal stability and thermal conductivity increased with rising sintering temperatures for both MAX composites. This is because higher sintering temperatures enhance atomic diffusion, densification, and particle bonding, leading to improved thermal stability and thermal conductivity of the composite. Moreover, the thermal stability of the Ti<sub>4</sub>AlN<sub>3</sub> composite is higher than that of the Ti<sub>3</sub>AlC<sub>2</sub> composites. At 1325 °C sintering, Ti<sub>3</sub>AlC<sub>2</sub> composites remain stable up to 600 °C with 1.4% weight loss, while the Ti<sub>4</sub>AlN<sub>3</sub> composite shows better stability up to 700 °C with only 0.6% weight loss. These MAX phase composites also show varying coefficients of thermal expansion (CTEs) at different temperature ranges, indicating that their thermal expansion properties are highly dependent on sintering temperatures. Both MAX composites exhibit lower overall CTEs at higher sintering temperatures, suggesting enhanced thermal stability. The negative CTEs at higher sintering temperatures in both materials suggest unusual thermal behavior, possibly due to phase transitions, secondary phase formation, or microstructural changes. These findings offer valuable insights into their thermal stability and decomposition characteristics, which are vital for high-temperature applications in electronics, optoelectronics, and semiconductor devices.</p>\",\"PeriodicalId\":18806,\"journal\":{\"name\":\"Nanoscale Advances\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974559/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5na00063g\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5na00063g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

MAX相复合材料以其优异的性能在航空航天、能源、核工业等高温应用领域受到广泛关注。然而,调整其热学和热机械性能以在高温下获得更好的性能仍然是一个重大挑战。因此,本研究的目的是合成用于高温应用的新型MAX相硼(B)复合材料。采用热压法制备了氮化钛铝(Ti4AlN3)和碳化钛铝(Ti3AlC2) MAX相增强B复合材料,烧结温度分别为1050℃、1250℃和1325℃。采用热重分析(TGA)、热盘法和热机械分析仪(TMA)研究了MAX相复合材料的热稳定性、导热性和热机械性能。结果表明,随着烧结温度的升高,两种MAX复合材料的热稳定性和导热系数均有所提高。这是因为较高的烧结温度增强了原子扩散、致密化和颗粒结合,从而提高了复合材料的热稳定性和导热性。此外,Ti4AlN3复合材料的热稳定性高于Ti3AlC2复合材料。在1325°C烧结时,Ti3AlC2复合材料在600°C下保持稳定,重量损失1.4%,而Ti4AlN3复合材料在700°C下具有更好的稳定性,重量损失仅为0.6%。这些MAX相复合材料在不同温度范围内的热膨胀系数(CTEs)也不同,表明其热膨胀性能高度依赖于烧结温度。两种MAX复合材料在较高的烧结温度下均表现出较低的总cte,表明热稳定性增强。在较高的烧结温度下,两种材料的负CTEs表明异常的热行为,可能是由于相变,二次相形成或微观结构变化。这些发现为它们的热稳定性和分解特性提供了有价值的见解,这对于电子、光电子和半导体器件的高温应用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tailoring the thermal and thermomechanical characteristics of novel MAX phase boron composites in high-temperature applications.

MAX phase composites are gaining great attention for their excellent attributes in high-temperature applications like aerospace, energy, and nuclear industries. However, tailoring their thermal and thermomechanical properties for better performance at elevated temperatures remains a significant challenge. Therefore, the aim of this study is to synthesize novel MAX phase boron (B) composites for high-temperature applications. Titanium aluminum nitride (Ti4AlN3) and titanium aluminum carbide (Ti3AlC2) MAX phase reinforced B composites were prepared using the hot-pressing method at three different sintering temperatures: 1050 °C, 1250 °C, and 1325 °C. Thermal stability, thermal conductivity and thermomechanical properties of MAX phase composites were investigated through thermogravimetric analysis (TGA), hot disk method, and thermomechanical analyzer (TMA). The results reveal that thermal stability and thermal conductivity increased with rising sintering temperatures for both MAX composites. This is because higher sintering temperatures enhance atomic diffusion, densification, and particle bonding, leading to improved thermal stability and thermal conductivity of the composite. Moreover, the thermal stability of the Ti4AlN3 composite is higher than that of the Ti3AlC2 composites. At 1325 °C sintering, Ti3AlC2 composites remain stable up to 600 °C with 1.4% weight loss, while the Ti4AlN3 composite shows better stability up to 700 °C with only 0.6% weight loss. These MAX phase composites also show varying coefficients of thermal expansion (CTEs) at different temperature ranges, indicating that their thermal expansion properties are highly dependent on sintering temperatures. Both MAX composites exhibit lower overall CTEs at higher sintering temperatures, suggesting enhanced thermal stability. The negative CTEs at higher sintering temperatures in both materials suggest unusual thermal behavior, possibly due to phase transitions, secondary phase formation, or microstructural changes. These findings offer valuable insights into their thermal stability and decomposition characteristics, which are vital for high-temperature applications in electronics, optoelectronics, and semiconductor devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信