热敏水凝胶涂层在聚醚砜膜上的直接方法,控制药物递送,显著抑制血液透析期间血小板减少症。

IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Junhan Tang, Dongmei Tong, Chuchu Tang, Shujing Wang, Guodong Dang, Weifeng Zhao, Shudong Sun, Changsheng Zhao
{"title":"热敏水凝胶涂层在聚醚砜膜上的直接方法,控制药物递送,显著抑制血液透析期间血小板减少症。","authors":"Junhan Tang, Dongmei Tong, Chuchu Tang, Shujing Wang, Guodong Dang, Weifeng Zhao, Shudong Sun, Changsheng Zhao","doi":"10.1002/mabi.202400645","DOIUrl":null,"url":null,"abstract":"<p><p>Thrombocytopenia is a potential complication associated with hemodialysis due to the unsatisfactory hemocompatibility of current dialysis membranes, which leads to excessive platelet destruction, accelerates organ failure, and threatens the patients' life safety in severe cases. In the clinical application of hemodialysis, there are a proportion of patients suffer thrombocytopenia. For these patients, heparin combined with tirofiban can be used during dialysis to suppress the occurrence of thrombocytopenia, but the medication requires intravenous injection and continuous infusion. To optimize the application of hemodialysis membranes, a dialysis membrane composed of polyethersulfone (PES) base membrane and a temperature-sensitive hydrogel coating poly (N-acryloyl glycinamide) (PNAGA) is designed, and prepared that can continuously release tirofiban through temperature control to reduce the burden of medication on patients and significantly inhibit the occurrence of thrombocytopenia. The resulting membrane exhibits an encapsulation efficiency of 36.2% (72.4 µg mL<sup>-1</sup>) for tirofiban, with drug release rates of 54.83% at 37 °C and 31.4% at 4 °C after 1 h. Additionally, the membrane shows excellent hydrophilicity and dialysis performance. It also effectively inhibits platelet adhesion (reduced by 92.3%), activation (reduced by 92.8%) and aggregation, and albumin adsorption (reduced by 84.7%). In summary, the work provides a new solution for the preparation of dialysis membranes that can prevent thrombocytopenia, which has potential applications in the safer hemodialysis membrane manufacturing sector.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400645"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Straightforward Approach Toward Thermo-Sensitive Hydrogel Coating on Polyethersulfone Membranes with Controlled Drug Delivery for Significant Inhibition of Thrombocytopenia During Hemodialysis.\",\"authors\":\"Junhan Tang, Dongmei Tong, Chuchu Tang, Shujing Wang, Guodong Dang, Weifeng Zhao, Shudong Sun, Changsheng Zhao\",\"doi\":\"10.1002/mabi.202400645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thrombocytopenia is a potential complication associated with hemodialysis due to the unsatisfactory hemocompatibility of current dialysis membranes, which leads to excessive platelet destruction, accelerates organ failure, and threatens the patients' life safety in severe cases. In the clinical application of hemodialysis, there are a proportion of patients suffer thrombocytopenia. For these patients, heparin combined with tirofiban can be used during dialysis to suppress the occurrence of thrombocytopenia, but the medication requires intravenous injection and continuous infusion. To optimize the application of hemodialysis membranes, a dialysis membrane composed of polyethersulfone (PES) base membrane and a temperature-sensitive hydrogel coating poly (N-acryloyl glycinamide) (PNAGA) is designed, and prepared that can continuously release tirofiban through temperature control to reduce the burden of medication on patients and significantly inhibit the occurrence of thrombocytopenia. The resulting membrane exhibits an encapsulation efficiency of 36.2% (72.4 µg mL<sup>-1</sup>) for tirofiban, with drug release rates of 54.83% at 37 °C and 31.4% at 4 °C after 1 h. Additionally, the membrane shows excellent hydrophilicity and dialysis performance. It also effectively inhibits platelet adhesion (reduced by 92.3%), activation (reduced by 92.8%) and aggregation, and albumin adsorption (reduced by 84.7%). In summary, the work provides a new solution for the preparation of dialysis membranes that can prevent thrombocytopenia, which has potential applications in the safer hemodialysis membrane manufacturing sector.</p>\",\"PeriodicalId\":18103,\"journal\":{\"name\":\"Macromolecular bioscience\",\"volume\":\" \",\"pages\":\"e2400645\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular bioscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/mabi.202400645\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202400645","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于当前透析膜的血液相容性不理想,血小板减少是血液透析的潜在并发症,导致血小板过度破坏,加速器官衰竭,严重时威胁患者的生命安全。在血液透析的临床应用中,有一定比例的患者存在血小板减少症。对于这些患者,可在透析时使用肝素联合替罗非班抑制血小板减少症的发生,但用药需要静脉注射和持续输注。为优化血液透析膜的应用,设计并制备了一种由聚醚砜(PES)基膜和温度敏感型水凝胶包被聚n -丙烯酰甘氨酸酰胺(PNAGA)组成的透析膜,该透析膜可通过温控持续释放替罗非班,减轻患者用药负担,显著抑制血小板减少症的发生。该膜对替罗非班的包封率为36.2%(72.4µg mL-1),在37℃和4℃条件下,1 h后的药物释放率分别为54.83%和31.4%。此外,该膜还具有良好的亲水性和透析性能。它还能有效抑制血小板粘附(降低92.3%)、活化(降低92.8%)和聚集,以及白蛋白吸附(降低84.7%)。综上所述,本研究为预防血小板减少症的透析膜的制备提供了新的解决方案,在更安全的血液透析膜制造领域具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Straightforward Approach Toward Thermo-Sensitive Hydrogel Coating on Polyethersulfone Membranes with Controlled Drug Delivery for Significant Inhibition of Thrombocytopenia During Hemodialysis.

Thrombocytopenia is a potential complication associated with hemodialysis due to the unsatisfactory hemocompatibility of current dialysis membranes, which leads to excessive platelet destruction, accelerates organ failure, and threatens the patients' life safety in severe cases. In the clinical application of hemodialysis, there are a proportion of patients suffer thrombocytopenia. For these patients, heparin combined with tirofiban can be used during dialysis to suppress the occurrence of thrombocytopenia, but the medication requires intravenous injection and continuous infusion. To optimize the application of hemodialysis membranes, a dialysis membrane composed of polyethersulfone (PES) base membrane and a temperature-sensitive hydrogel coating poly (N-acryloyl glycinamide) (PNAGA) is designed, and prepared that can continuously release tirofiban through temperature control to reduce the burden of medication on patients and significantly inhibit the occurrence of thrombocytopenia. The resulting membrane exhibits an encapsulation efficiency of 36.2% (72.4 µg mL-1) for tirofiban, with drug release rates of 54.83% at 37 °C and 31.4% at 4 °C after 1 h. Additionally, the membrane shows excellent hydrophilicity and dialysis performance. It also effectively inhibits platelet adhesion (reduced by 92.3%), activation (reduced by 92.8%) and aggregation, and albumin adsorption (reduced by 84.7%). In summary, the work provides a new solution for the preparation of dialysis membranes that can prevent thrombocytopenia, which has potential applications in the safer hemodialysis membrane manufacturing sector.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular bioscience
Macromolecular bioscience 生物-材料科学:生物材料
CiteScore
7.90
自引率
2.20%
发文量
211
审稿时长
1.5 months
期刊介绍: Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals. Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers. With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信