植物共翻译mRNA衰变:最新进展和未来方向。

IF 5.6 2区 生物学 Q1 PLANT SCIENCES
Jean-Marc Deragon, Rémy Merret
{"title":"植物共翻译mRNA衰变:最新进展和未来方向。","authors":"Jean-Marc Deragon, Rémy Merret","doi":"10.1093/jxb/eraf146","DOIUrl":null,"url":null,"abstract":"<p><p>Tight regulation of messenger RNA (mRNA) stability is essential to ensure accurate gene expression in response to developmental and environmental cues. mRNA stability is controlled by mRNA decay pathways, which have traditionally been proposed to occur independently of translation. However, the recent discovery of a co-translational mRNA decay pathway (also known as CTRD) reveals that mRNA translation and decay can be coupled. While being translated, a mRNA can be targeted for degradation. This pathway was first described in yeast and rapidly identified in several plant species. This review explores recent advances in our understanding of CTRD in plants, emphasizing its regulation and its importance for development and stress response. The different metrics used to assess CTRD activity are also presented. Furthermore, this review outlines future directions to explore the importance of mRNA decay in maintaining mRNA homeostasis in plants.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-Translational mRNA Decay in Plants: Recent advances and future directions.\",\"authors\":\"Jean-Marc Deragon, Rémy Merret\",\"doi\":\"10.1093/jxb/eraf146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tight regulation of messenger RNA (mRNA) stability is essential to ensure accurate gene expression in response to developmental and environmental cues. mRNA stability is controlled by mRNA decay pathways, which have traditionally been proposed to occur independently of translation. However, the recent discovery of a co-translational mRNA decay pathway (also known as CTRD) reveals that mRNA translation and decay can be coupled. While being translated, a mRNA can be targeted for degradation. This pathway was first described in yeast and rapidly identified in several plant species. This review explores recent advances in our understanding of CTRD in plants, emphasizing its regulation and its importance for development and stress response. The different metrics used to assess CTRD activity are also presented. Furthermore, this review outlines future directions to explore the importance of mRNA decay in maintaining mRNA homeostasis in plants.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/eraf146\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf146","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

严格调控信使RNA (mRNA)的稳定性对于确保准确的基因表达以响应发育和环境线索至关重要。mRNA的稳定性受mRNA衰变途径的控制,传统上认为mRNA衰变途径独立于翻译而发生。然而,最近发现的共翻译mRNA衰变途径(也称为CTRD)表明mRNA的翻译和衰变可以耦合。在被翻译的过程中,mRNA可以被降解。该途径首先在酵母中被描述,并迅速在几种植物物种中被发现。本文综述了植物CTRD的最新研究进展,强调了CTRD的调控及其在植物发育和逆境反应中的重要性。本文还介绍了用于评估CTRD活动的不同指标。此外,本文还概述了未来的研究方向,以探索mRNA衰变在维持植物mRNA稳态中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Co-Translational mRNA Decay in Plants: Recent advances and future directions.

Tight regulation of messenger RNA (mRNA) stability is essential to ensure accurate gene expression in response to developmental and environmental cues. mRNA stability is controlled by mRNA decay pathways, which have traditionally been proposed to occur independently of translation. However, the recent discovery of a co-translational mRNA decay pathway (also known as CTRD) reveals that mRNA translation and decay can be coupled. While being translated, a mRNA can be targeted for degradation. This pathway was first described in yeast and rapidly identified in several plant species. This review explores recent advances in our understanding of CTRD in plants, emphasizing its regulation and its importance for development and stress response. The different metrics used to assess CTRD activity are also presented. Furthermore, this review outlines future directions to explore the importance of mRNA decay in maintaining mRNA homeostasis in plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信