Haitham K R Al-Sharifi, C B Meenakshy, K S Sandhya, Ani Deepthi
{"title":"由噻唑[3,2- A]吲哚衍生的偶氮化合物对双金属离子的传感:一种选择性和灵敏的方法。","authors":"Haitham K R Al-Sharifi, C B Meenakshy, K S Sandhya, Ani Deepthi","doi":"10.1007/s10895-025-04291-1","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we report the synthesis and photophysical evaluation of hydrazone 7 and azo 9 compounds of a thiazolo[3,2-a] indole derivative 5; latter synthesized as per our earlier report. Of the two compounds, the azo compound 9 showed exceptional selectivity and sensitivity as a dual sensor for detecting Fe<sup>2+</sup> and Cu<sup>2+</sup> ions via a turn-off fluorescence mechanism with limit of detection 0.09 µM and 0.14 µM respectively which are much lower than the US Environmental Protection Agency (EPA) guideline, 5.36 µM for Fe<sup>2+</sup> and WHO guideline, 31.5 µM for Cu<sup>2+</sup> in the drinking water. DFT calculations revealed that both Fe<sup>2+</sup> and Cu<sup>2+</sup> complexes with compound 9, and possess low HOMO-LUMO gap of 1.63 eV and 2.94 eV respectively. The binding stoichiometry for both metals was determined to be 1:1 by Job's plot. Stern-Volmer plot (plotted after applying correction to emission intensity), which showed a linear pattern, and fluorescence lifetime measurements indicated primarily a static quenching mechanism for both ions. The chemosensor 9 demonstrated exceptional reversibility and restorability in detecting both Fe<sup>2+</sup> and Cu<sup>2+</sup>, highlighting its potential for practical applications.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual Metal Ion Sensing by an Azo Compound Derived from Thiazolo[3,2-a] Indole: A Selective and Sensitive Approach.\",\"authors\":\"Haitham K R Al-Sharifi, C B Meenakshy, K S Sandhya, Ani Deepthi\",\"doi\":\"10.1007/s10895-025-04291-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we report the synthesis and photophysical evaluation of hydrazone 7 and azo 9 compounds of a thiazolo[3,2-a] indole derivative 5; latter synthesized as per our earlier report. Of the two compounds, the azo compound 9 showed exceptional selectivity and sensitivity as a dual sensor for detecting Fe<sup>2+</sup> and Cu<sup>2+</sup> ions via a turn-off fluorescence mechanism with limit of detection 0.09 µM and 0.14 µM respectively which are much lower than the US Environmental Protection Agency (EPA) guideline, 5.36 µM for Fe<sup>2+</sup> and WHO guideline, 31.5 µM for Cu<sup>2+</sup> in the drinking water. DFT calculations revealed that both Fe<sup>2+</sup> and Cu<sup>2+</sup> complexes with compound 9, and possess low HOMO-LUMO gap of 1.63 eV and 2.94 eV respectively. The binding stoichiometry for both metals was determined to be 1:1 by Job's plot. Stern-Volmer plot (plotted after applying correction to emission intensity), which showed a linear pattern, and fluorescence lifetime measurements indicated primarily a static quenching mechanism for both ions. The chemosensor 9 demonstrated exceptional reversibility and restorability in detecting both Fe<sup>2+</sup> and Cu<sup>2+</sup>, highlighting its potential for practical applications.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-025-04291-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-025-04291-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Dual Metal Ion Sensing by an Azo Compound Derived from Thiazolo[3,2-a] Indole: A Selective and Sensitive Approach.
In this study, we report the synthesis and photophysical evaluation of hydrazone 7 and azo 9 compounds of a thiazolo[3,2-a] indole derivative 5; latter synthesized as per our earlier report. Of the two compounds, the azo compound 9 showed exceptional selectivity and sensitivity as a dual sensor for detecting Fe2+ and Cu2+ ions via a turn-off fluorescence mechanism with limit of detection 0.09 µM and 0.14 µM respectively which are much lower than the US Environmental Protection Agency (EPA) guideline, 5.36 µM for Fe2+ and WHO guideline, 31.5 µM for Cu2+ in the drinking water. DFT calculations revealed that both Fe2+ and Cu2+ complexes with compound 9, and possess low HOMO-LUMO gap of 1.63 eV and 2.94 eV respectively. The binding stoichiometry for both metals was determined to be 1:1 by Job's plot. Stern-Volmer plot (plotted after applying correction to emission intensity), which showed a linear pattern, and fluorescence lifetime measurements indicated primarily a static quenching mechanism for both ions. The chemosensor 9 demonstrated exceptional reversibility and restorability in detecting both Fe2+ and Cu2+, highlighting its potential for practical applications.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.