Michal Antala, Marek Kovar, Lucia Sporinová, Andrej Filacek, Radosław Juszczak, Marek Zivcak, Aida Shomali, Raghvendra Prasad, Marian Brestic, Anshu Rastogi
{"title":"水分胁迫下荞麦(Fagopyrum esculentum Moench.)基因型的高通量表型分析:探索可持续农业的抗旱性。","authors":"Michal Antala, Marek Kovar, Lucia Sporinová, Andrej Filacek, Radosław Juszczak, Marek Zivcak, Aida Shomali, Raghvendra Prasad, Marian Brestic, Anshu Rastogi","doi":"10.1186/s12870-025-06429-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>As global agriculture faces the challenge of climate change, characterized by longer and more severe drought episodes, there is an increasing need for crop diversification and improved plant breeding. Buckwheat is one of the climate-resilient candidates for future important crops with remarkable adaptability to various biotic and abiotic stresses. As an underbred crop, a large number of genotypes should be assessed for the breeding of superior plants. Therefore, this study investigates the response of various buckwheat genotypes to water stress by high-throughput phenotyping and auxiliary plant physiology measurements.</p><p><strong>Results: </strong>We assessed six buckwheat genotypes from different regions under mild and severe water stress, focusing on morphological and physiological changes to understand drought tolerance mechanisms. Our findings revealed that reallocation of assimilated carbon from growth to secondary metabolite production is a common response to drought stress. Among the genotypes tested, Panda emerged as the most drought-resistant, with its morphology remaining the most stable under mild water stress and its ability to rapidly accumulate protective pigments in response to drought. Silver Hull also demonstrated resilience, maintaining its aboveground biomass under mild water stress at levels comparable to the control group. Additionally, the response magnitude to drought stress was linked to the biomass production potential of the genotypes, which was higher for those from warmer regions (Bhutan, Zimbabwe) and lower for those from colder regions (Poland, Canada).</p><p><strong>Conclusion: </strong>The diversity in genotypic responses highlights the significant role of genetic variability in shaping drought resistance strategies in buckwheat. This research not only enhances our understanding of buckwheat's physiological responses to water stress but also holds promise for developing drought-resistant buckwheat varieties. These advancements are crucial for promoting sustainable agriculture in the face of climate change.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"444"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-throughput phenotyping of buckwheat (Fagopyrum esculentum Moench.) genotypes under water stress: exploring drought resistance for sustainable agriculture.\",\"authors\":\"Michal Antala, Marek Kovar, Lucia Sporinová, Andrej Filacek, Radosław Juszczak, Marek Zivcak, Aida Shomali, Raghvendra Prasad, Marian Brestic, Anshu Rastogi\",\"doi\":\"10.1186/s12870-025-06429-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>As global agriculture faces the challenge of climate change, characterized by longer and more severe drought episodes, there is an increasing need for crop diversification and improved plant breeding. Buckwheat is one of the climate-resilient candidates for future important crops with remarkable adaptability to various biotic and abiotic stresses. As an underbred crop, a large number of genotypes should be assessed for the breeding of superior plants. Therefore, this study investigates the response of various buckwheat genotypes to water stress by high-throughput phenotyping and auxiliary plant physiology measurements.</p><p><strong>Results: </strong>We assessed six buckwheat genotypes from different regions under mild and severe water stress, focusing on morphological and physiological changes to understand drought tolerance mechanisms. Our findings revealed that reallocation of assimilated carbon from growth to secondary metabolite production is a common response to drought stress. Among the genotypes tested, Panda emerged as the most drought-resistant, with its morphology remaining the most stable under mild water stress and its ability to rapidly accumulate protective pigments in response to drought. Silver Hull also demonstrated resilience, maintaining its aboveground biomass under mild water stress at levels comparable to the control group. Additionally, the response magnitude to drought stress was linked to the biomass production potential of the genotypes, which was higher for those from warmer regions (Bhutan, Zimbabwe) and lower for those from colder regions (Poland, Canada).</p><p><strong>Conclusion: </strong>The diversity in genotypic responses highlights the significant role of genetic variability in shaping drought resistance strategies in buckwheat. This research not only enhances our understanding of buckwheat's physiological responses to water stress but also holds promise for developing drought-resistant buckwheat varieties. These advancements are crucial for promoting sustainable agriculture in the face of climate change.</p>\",\"PeriodicalId\":9198,\"journal\":{\"name\":\"BMC Plant Biology\",\"volume\":\"25 1\",\"pages\":\"444\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12870-025-06429-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06429-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
High-throughput phenotyping of buckwheat (Fagopyrum esculentum Moench.) genotypes under water stress: exploring drought resistance for sustainable agriculture.
Background: As global agriculture faces the challenge of climate change, characterized by longer and more severe drought episodes, there is an increasing need for crop diversification and improved plant breeding. Buckwheat is one of the climate-resilient candidates for future important crops with remarkable adaptability to various biotic and abiotic stresses. As an underbred crop, a large number of genotypes should be assessed for the breeding of superior plants. Therefore, this study investigates the response of various buckwheat genotypes to water stress by high-throughput phenotyping and auxiliary plant physiology measurements.
Results: We assessed six buckwheat genotypes from different regions under mild and severe water stress, focusing on morphological and physiological changes to understand drought tolerance mechanisms. Our findings revealed that reallocation of assimilated carbon from growth to secondary metabolite production is a common response to drought stress. Among the genotypes tested, Panda emerged as the most drought-resistant, with its morphology remaining the most stable under mild water stress and its ability to rapidly accumulate protective pigments in response to drought. Silver Hull also demonstrated resilience, maintaining its aboveground biomass under mild water stress at levels comparable to the control group. Additionally, the response magnitude to drought stress was linked to the biomass production potential of the genotypes, which was higher for those from warmer regions (Bhutan, Zimbabwe) and lower for those from colder regions (Poland, Canada).
Conclusion: The diversity in genotypic responses highlights the significant role of genetic variability in shaping drought resistance strategies in buckwheat. This research not only enhances our understanding of buckwheat's physiological responses to water stress but also holds promise for developing drought-resistant buckwheat varieties. These advancements are crucial for promoting sustainable agriculture in the face of climate change.
期刊介绍:
BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.