心理健康对阿片类药物成瘾影响的风险结构模型

IF 2 4区 数学 Q2 BIOLOGY
Katelyn R Newton, London M Luttrell, Julie C Blackwood, Kathryn J Montovan, Eli E Goldwyn
{"title":"心理健康对阿片类药物成瘾影响的风险结构模型","authors":"Katelyn R Newton, London M Luttrell, Julie C Blackwood, Kathryn J Montovan, Eli E Goldwyn","doi":"10.1007/s11538-025-01431-3","DOIUrl":null,"url":null,"abstract":"<p><p>In 2021, over 80,000 of the 107,622 overdose deaths in the United States involved opioids, with opioid use disorder (OUD) and fatal overdoses imposing economic costs exceeding $1 trillion in 2017. Mathematical modeling provides an important tool for understanding the dynamics of the opioid epidemic and evaluating the potential benefits of different treatment and prevention strategies. In particular, we extend the Susceptible-Infected-Recovered paradigm for modeling infectious diseases to the opioid crisis. While existing compartmental models of OUD often assume equal risk of addiction across individuals, this assumption overlooks the significant role of risk heterogeneity. Unlike previous models that assume uniform addiction risk, our model incorporates risk stratification to account for the disproportionate burden among individuals with mental health disorders, who represent 20% of the U.S. population but account for over half of opioid prescriptions and misuse. Our compartmental model distinguishes between addiction pathways initiated by prescription opioids and those driven by social influences. Using existing data, we calibrate the model to estimate key parameters and quantify the impact of risk heterogeneity, offering insights to the addiction process.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"87 5","pages":"66"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Risk-Structured Model of the Influence of Mental Health on Opioid Addiction.\",\"authors\":\"Katelyn R Newton, London M Luttrell, Julie C Blackwood, Kathryn J Montovan, Eli E Goldwyn\",\"doi\":\"10.1007/s11538-025-01431-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In 2021, over 80,000 of the 107,622 overdose deaths in the United States involved opioids, with opioid use disorder (OUD) and fatal overdoses imposing economic costs exceeding $1 trillion in 2017. Mathematical modeling provides an important tool for understanding the dynamics of the opioid epidemic and evaluating the potential benefits of different treatment and prevention strategies. In particular, we extend the Susceptible-Infected-Recovered paradigm for modeling infectious diseases to the opioid crisis. While existing compartmental models of OUD often assume equal risk of addiction across individuals, this assumption overlooks the significant role of risk heterogeneity. Unlike previous models that assume uniform addiction risk, our model incorporates risk stratification to account for the disproportionate burden among individuals with mental health disorders, who represent 20% of the U.S. population but account for over half of opioid prescriptions and misuse. Our compartmental model distinguishes between addiction pathways initiated by prescription opioids and those driven by social influences. Using existing data, we calibrate the model to estimate key parameters and quantify the impact of risk heterogeneity, offering insights to the addiction process.</p>\",\"PeriodicalId\":9372,\"journal\":{\"name\":\"Bulletin of Mathematical Biology\",\"volume\":\"87 5\",\"pages\":\"66\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11538-025-01431-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-025-01431-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

2021年,美国107,622例过量死亡中有80,000多人与阿片类药物有关,阿片类药物使用障碍(OUD)和致命的过量用药在2017年造成的经济成本超过1万亿美元。数学建模为了解阿片类药物流行的动态和评估不同治疗和预防策略的潜在益处提供了重要工具。特别是,我们将易感-感染-康复的传染病模型扩展到阿片类药物危机。虽然现有的OUD分区模型通常假设个体之间的成瘾风险相等,但这种假设忽略了风险异质性的重要作用。与之前假设统一成瘾风险的模型不同,我们的模型纳入了风险分层,以解释精神健康障碍患者的不成比例负担,他们占美国人口的20%,但占阿片类药物处方和滥用的一半以上。我们的隔间模型区分了处方阿片类药物引发的成瘾途径和由社会影响驱动的成瘾途径。利用现有数据,我们校准模型以估计关键参数并量化风险异质性的影响,从而为成瘾过程提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Risk-Structured Model of the Influence of Mental Health on Opioid Addiction.

In 2021, over 80,000 of the 107,622 overdose deaths in the United States involved opioids, with opioid use disorder (OUD) and fatal overdoses imposing economic costs exceeding $1 trillion in 2017. Mathematical modeling provides an important tool for understanding the dynamics of the opioid epidemic and evaluating the potential benefits of different treatment and prevention strategies. In particular, we extend the Susceptible-Infected-Recovered paradigm for modeling infectious diseases to the opioid crisis. While existing compartmental models of OUD often assume equal risk of addiction across individuals, this assumption overlooks the significant role of risk heterogeneity. Unlike previous models that assume uniform addiction risk, our model incorporates risk stratification to account for the disproportionate burden among individuals with mental health disorders, who represent 20% of the U.S. population but account for over half of opioid prescriptions and misuse. Our compartmental model distinguishes between addiction pathways initiated by prescription opioids and those driven by social influences. Using existing data, we calibrate the model to estimate key parameters and quantify the impact of risk heterogeneity, offering insights to the addiction process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
8.60%
发文量
123
审稿时长
7.5 months
期刊介绍: The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including: Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations Research in mathematical biology education Reviews Commentaries Perspectives, and contributions that discuss issues important to the profession All contributions are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信