颗粒流-固壁相互作用:茶壶效应的研究。

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Soft Matter Pub Date : 2025-04-09 DOI:10.1039/d5sm00084j
Yishan Hong, Hongyi Zou, Lijun Yang, Yitan Li, Ruo-Yu Dong
{"title":"颗粒流-固壁相互作用:茶壶效应的研究。","authors":"Yishan Hong, Hongyi Zou, Lijun Yang, Yitan Li, Ruo-Yu Dong","doi":"10.1039/d5sm00084j","DOIUrl":null,"url":null,"abstract":"<p><p>The evolution of granular flows generally involves solid boundaries, which add complexity to their dynamics and pose challenges to understand relevant natural and industrial phenomena. While an interesting \"teapot effect\" has been observed for liquid flowing over the solid surface of a teapot's spout, a similar phenomenon for discrete particles receives far less attention. In this work, we experimentally investigated the interactions between granular flows and a wedge-shaped solid edge (spout), showing that the trailing edge of the solid boundary plays a key role in causing velocity non-uniformity and splitting the flow into \"dispersed\" and \"uniform\" regions. Tuning the parameters (inclination angle, particle diameter, radii and surface roughness of the trailing edge) of the granular flow, a dimensionless number was summarized and successfully predicted the dispersion of the granular flows. Moreover, we also proved that introducing stronger cohesive forces between particles could harness the granular flows from heterogenous structures to grain clusters, which can be employed to switch between different flow regimes and regulate the dispersion behavior of particle flows. This study reveals the interaction of granular flow over complex solid boundaries, potentially offering new insights into particle-dominated flow dynamics.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Granular flow-solid wall interaction: investigation of the teapot effect.\",\"authors\":\"Yishan Hong, Hongyi Zou, Lijun Yang, Yitan Li, Ruo-Yu Dong\",\"doi\":\"10.1039/d5sm00084j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The evolution of granular flows generally involves solid boundaries, which add complexity to their dynamics and pose challenges to understand relevant natural and industrial phenomena. While an interesting \\\"teapot effect\\\" has been observed for liquid flowing over the solid surface of a teapot's spout, a similar phenomenon for discrete particles receives far less attention. In this work, we experimentally investigated the interactions between granular flows and a wedge-shaped solid edge (spout), showing that the trailing edge of the solid boundary plays a key role in causing velocity non-uniformity and splitting the flow into \\\"dispersed\\\" and \\\"uniform\\\" regions. Tuning the parameters (inclination angle, particle diameter, radii and surface roughness of the trailing edge) of the granular flow, a dimensionless number was summarized and successfully predicted the dispersion of the granular flows. Moreover, we also proved that introducing stronger cohesive forces between particles could harness the granular flows from heterogenous structures to grain clusters, which can be employed to switch between different flow regimes and regulate the dispersion behavior of particle flows. This study reveals the interaction of granular flow over complex solid boundaries, potentially offering new insights into particle-dominated flow dynamics.</p>\",\"PeriodicalId\":103,\"journal\":{\"name\":\"Soft Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Matter\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5sm00084j\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sm00084j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

颗粒流的演化通常涉及固体边界,这增加了其动力学的复杂性,并对理解相关的自然和工业现象提出了挑战。当液体在茶壶壶嘴的固体表面上流动时,人们观察到一种有趣的“茶壶效应”,而离散粒子的类似现象却很少受到关注。在这项工作中,我们通过实验研究了颗粒流与楔形固体边缘(喷口)之间的相互作用,表明固体边界的后缘在导致速度不均匀和将流动分裂为“分散”和“均匀”区域方面起着关键作用。调整颗粒流的倾角、颗粒直径、半径和尾缘表面粗糙度等参数,总结出一个无量纲数,并成功地预测了颗粒流的分散。此外,我们还证明了在颗粒之间引入更强的内聚力可以控制颗粒从异质结构到颗粒簇的流动,可以用来在不同的流动状态之间切换和调节颗粒流的分散行为。这项研究揭示了颗粒流动在复杂固体边界上的相互作用,可能为颗粒主导的流动动力学提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Granular flow-solid wall interaction: investigation of the teapot effect.

The evolution of granular flows generally involves solid boundaries, which add complexity to their dynamics and pose challenges to understand relevant natural and industrial phenomena. While an interesting "teapot effect" has been observed for liquid flowing over the solid surface of a teapot's spout, a similar phenomenon for discrete particles receives far less attention. In this work, we experimentally investigated the interactions between granular flows and a wedge-shaped solid edge (spout), showing that the trailing edge of the solid boundary plays a key role in causing velocity non-uniformity and splitting the flow into "dispersed" and "uniform" regions. Tuning the parameters (inclination angle, particle diameter, radii and surface roughness of the trailing edge) of the granular flow, a dimensionless number was summarized and successfully predicted the dispersion of the granular flows. Moreover, we also proved that introducing stronger cohesive forces between particles could harness the granular flows from heterogenous structures to grain clusters, which can be employed to switch between different flow regimes and regulate the dispersion behavior of particle flows. This study reveals the interaction of granular flow over complex solid boundaries, potentially offering new insights into particle-dominated flow dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信