CAV-1与pten介导的高氧急性肺损伤细胞凋亡的相关性

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xin Yi, Bing Li, Xiao Yu, Dawei Cao, Ting Xue, Yujing Zhao, Xinri Zhang
{"title":"CAV-1与pten介导的高氧急性肺损伤细胞凋亡的相关性","authors":"Xin Yi, Bing Li, Xiao Yu, Dawei Cao, Ting Xue, Yujing Zhao, Xinri Zhang","doi":"10.1007/s12010-025-05208-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Respiratory support is essential in the clinical management of critically ill patients; however, prolonged exposure to high concentrations of oxygen can result in hyperoxia-induced acute lung injury (HALI). In this study, we developed a model of hyperoxia exposure utilizing C57BL/6 mice and human bronchial epithelial (BEAS-2B) cells. We employed CAV-1 siRNA transfection and CAV-1 expression plasmid techniques to analyze the effects of hyperoxia on the expression of caveolin-1 (CAV-1), the deletion of the phosphatase and tensin homolog (PTEN) gene on chromosome 10, and the apoptotic markers Bax and Bcl-2. Additionally, we explored the mechanisms by which CAV-1 regulates PTEN-mediated apoptosis in the context of HALI. Our findings aim to provide valuable insights for developing effective preventive and therapeutic strategies to combat this condition.</p><p><strong>Methods: </strong>First, we established a hyperoxia-induced acute lung injury (HALI) model in male C57BL/6 mice. Histopathological examination was conducted using hematoxylin-eosin staining to evaluate the pathological changes and the severity of lung tissue damage. Next, we developed an in vitro HALI model utilizing the BEAS-2B cell line. Subsequently, CAV-1 siRNA and CAV-1 expression plasmids were transfected into BEAS-2B cells. We quantified the expression levels of CAV-1, PTEN, Bax, and Bcl-2 using reverse transcription polymerase chain reaction (RT-PCR) and immunoblotting techniques. Additionally, the impact of altered CAV-1 expression on apoptosis in BEAS-2B cells was assessed through flow cytometry.</p><p><strong>Results: </strong>Exposure to hyperoxia led to pathological alterations in mice's lung tissue, increased the CAV-1, PTEN, and Bax expression levels, and decreased Bcl-2 expression. Initially, there were no notable variances in the expression levels of CAV-1, PTEN, and Bax in the cells. However, as the exposure time to hyperoxia prolonged, there was a significant increase in both mRNA and protein expression levels of CAV-1 and PTEN, while Bcl-2 exhibited a significant decrease. Moreover, CAV-1 knockdown attenuated the expression of PTEN and Bax, and elevated the expression of Bcl-2. However, CAV-1 overexpression showed an opposite result. The expression levels of CAV-1, PTEN, and Bax were positively correlated in mice and cell models, and negatively correlated with those of Bcl-2. Additionally, downregulation of CAV-1 suppressed apoptosis in BEAS-2B cells.</p><p><strong>Conclusion: </strong>Our results indicate that CAV-1 plays a pivotal role in regulating the expression of PTEN and the apoptosis-related factors Bax and Bcl-2 in a hyperoxic environment. This regulatory function of CAV-1 on PTEN and its downstream apoptotic pathways suggests a significant correlation between CAV-1 and PTEN-mediated apoptosis. Consequently, CAV-1 is involved in the development of hyperoxic lung injury (HALI) through the PTEN-mediated apoptotic pathway. These findings offer new insights into the molecular mechanisms underlying the pathogenesis of HALI and underscore the potential therapeutic implications of targeting CAV-1 in the management of this condition.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlation Between CAV-1 and PTEN-Mediated Apoptosis in Hyperoxia-Induced Acute Lung Injury.\",\"authors\":\"Xin Yi, Bing Li, Xiao Yu, Dawei Cao, Ting Xue, Yujing Zhao, Xinri Zhang\",\"doi\":\"10.1007/s12010-025-05208-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Respiratory support is essential in the clinical management of critically ill patients; however, prolonged exposure to high concentrations of oxygen can result in hyperoxia-induced acute lung injury (HALI). In this study, we developed a model of hyperoxia exposure utilizing C57BL/6 mice and human bronchial epithelial (BEAS-2B) cells. We employed CAV-1 siRNA transfection and CAV-1 expression plasmid techniques to analyze the effects of hyperoxia on the expression of caveolin-1 (CAV-1), the deletion of the phosphatase and tensin homolog (PTEN) gene on chromosome 10, and the apoptotic markers Bax and Bcl-2. Additionally, we explored the mechanisms by which CAV-1 regulates PTEN-mediated apoptosis in the context of HALI. Our findings aim to provide valuable insights for developing effective preventive and therapeutic strategies to combat this condition.</p><p><strong>Methods: </strong>First, we established a hyperoxia-induced acute lung injury (HALI) model in male C57BL/6 mice. Histopathological examination was conducted using hematoxylin-eosin staining to evaluate the pathological changes and the severity of lung tissue damage. Next, we developed an in vitro HALI model utilizing the BEAS-2B cell line. Subsequently, CAV-1 siRNA and CAV-1 expression plasmids were transfected into BEAS-2B cells. We quantified the expression levels of CAV-1, PTEN, Bax, and Bcl-2 using reverse transcription polymerase chain reaction (RT-PCR) and immunoblotting techniques. Additionally, the impact of altered CAV-1 expression on apoptosis in BEAS-2B cells was assessed through flow cytometry.</p><p><strong>Results: </strong>Exposure to hyperoxia led to pathological alterations in mice's lung tissue, increased the CAV-1, PTEN, and Bax expression levels, and decreased Bcl-2 expression. Initially, there were no notable variances in the expression levels of CAV-1, PTEN, and Bax in the cells. However, as the exposure time to hyperoxia prolonged, there was a significant increase in both mRNA and protein expression levels of CAV-1 and PTEN, while Bcl-2 exhibited a significant decrease. Moreover, CAV-1 knockdown attenuated the expression of PTEN and Bax, and elevated the expression of Bcl-2. However, CAV-1 overexpression showed an opposite result. The expression levels of CAV-1, PTEN, and Bax were positively correlated in mice and cell models, and negatively correlated with those of Bcl-2. Additionally, downregulation of CAV-1 suppressed apoptosis in BEAS-2B cells.</p><p><strong>Conclusion: </strong>Our results indicate that CAV-1 plays a pivotal role in regulating the expression of PTEN and the apoptosis-related factors Bax and Bcl-2 in a hyperoxic environment. This regulatory function of CAV-1 on PTEN and its downstream apoptotic pathways suggests a significant correlation between CAV-1 and PTEN-mediated apoptosis. Consequently, CAV-1 is involved in the development of hyperoxic lung injury (HALI) through the PTEN-mediated apoptotic pathway. These findings offer new insights into the molecular mechanisms underlying the pathogenesis of HALI and underscore the potential therapeutic implications of targeting CAV-1 in the management of this condition.</p>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12010-025-05208-1\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-025-05208-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:呼吸支持在危重症患者的临床管理中至关重要;然而,长时间暴露于高浓度氧气可导致高氧诱导的急性肺损伤(HALI)。在这项研究中,我们利用C57BL/6小鼠和人支气管上皮细胞(BEAS-2B)建立了高氧暴露模型。我们采用CAV-1 siRNA转染和CAV-1表达质粒技术,分析了高氧对小鼠10号染色体小窝蛋白-1 (CAV-1)表达、磷酸酶和紧张素同源基因(PTEN)缺失以及凋亡标志物Bax和Bcl-2的影响。此外,我们探索了在HALI背景下CAV-1调节pten介导的细胞凋亡的机制。我们的研究结果旨在为开发有效的预防和治疗策略提供有价值的见解,以对抗这种情况。方法:首先建立雄性C57BL/6小鼠高氧性急性肺损伤(HALI)模型。采用苏木精-伊红染色进行组织病理学检查,评价病理变化及肺组织损伤的严重程度。接下来,我们利用BEAS-2B细胞系建立了体外HALI模型。随后,将CAV-1 siRNA和CAV-1表达质粒转染BEAS-2B细胞。我们使用逆转录聚合酶链反应(RT-PCR)和免疫印迹技术定量CAV-1、PTEN、Bax和Bcl-2的表达水平。此外,通过流式细胞术评估CAV-1表达改变对BEAS-2B细胞凋亡的影响。结果:高氧暴露导致小鼠肺组织病理改变,CAV-1、PTEN、Bax表达水平升高,Bcl-2表达降低。最初,细胞中CAV-1、PTEN和Bax的表达水平无显著差异。然而,随着高氧暴露时间的延长,CAV-1和PTEN的mRNA和蛋白表达水平均显著升高,而Bcl-2的表达水平则显著降低。CAV-1敲低可降低PTEN和Bax的表达,升高Bcl-2的表达。然而,CAV-1过表达则显示相反的结果。CAV-1、PTEN、Bax在小鼠和细胞模型中的表达水平呈正相关,与Bcl-2的表达水平呈负相关。此外,下调CAV-1可抑制BEAS-2B细胞的凋亡。结论:CAV-1在高氧环境下调控PTEN及凋亡相关因子Bax、Bcl-2的表达中起关键作用。CAV-1对PTEN及其下游凋亡通路的调节功能表明,CAV-1与PTEN介导的细胞凋亡之间存在显著相关性。因此,CAV-1通过pten介导的凋亡途径参与了高氧性肺损伤(HALI)的发生。这些发现为HALI发病机制的分子机制提供了新的见解,并强调了靶向CAV-1治疗这种疾病的潜在治疗意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correlation Between CAV-1 and PTEN-Mediated Apoptosis in Hyperoxia-Induced Acute Lung Injury.

Purpose: Respiratory support is essential in the clinical management of critically ill patients; however, prolonged exposure to high concentrations of oxygen can result in hyperoxia-induced acute lung injury (HALI). In this study, we developed a model of hyperoxia exposure utilizing C57BL/6 mice and human bronchial epithelial (BEAS-2B) cells. We employed CAV-1 siRNA transfection and CAV-1 expression plasmid techniques to analyze the effects of hyperoxia on the expression of caveolin-1 (CAV-1), the deletion of the phosphatase and tensin homolog (PTEN) gene on chromosome 10, and the apoptotic markers Bax and Bcl-2. Additionally, we explored the mechanisms by which CAV-1 regulates PTEN-mediated apoptosis in the context of HALI. Our findings aim to provide valuable insights for developing effective preventive and therapeutic strategies to combat this condition.

Methods: First, we established a hyperoxia-induced acute lung injury (HALI) model in male C57BL/6 mice. Histopathological examination was conducted using hematoxylin-eosin staining to evaluate the pathological changes and the severity of lung tissue damage. Next, we developed an in vitro HALI model utilizing the BEAS-2B cell line. Subsequently, CAV-1 siRNA and CAV-1 expression plasmids were transfected into BEAS-2B cells. We quantified the expression levels of CAV-1, PTEN, Bax, and Bcl-2 using reverse transcription polymerase chain reaction (RT-PCR) and immunoblotting techniques. Additionally, the impact of altered CAV-1 expression on apoptosis in BEAS-2B cells was assessed through flow cytometry.

Results: Exposure to hyperoxia led to pathological alterations in mice's lung tissue, increased the CAV-1, PTEN, and Bax expression levels, and decreased Bcl-2 expression. Initially, there were no notable variances in the expression levels of CAV-1, PTEN, and Bax in the cells. However, as the exposure time to hyperoxia prolonged, there was a significant increase in both mRNA and protein expression levels of CAV-1 and PTEN, while Bcl-2 exhibited a significant decrease. Moreover, CAV-1 knockdown attenuated the expression of PTEN and Bax, and elevated the expression of Bcl-2. However, CAV-1 overexpression showed an opposite result. The expression levels of CAV-1, PTEN, and Bax were positively correlated in mice and cell models, and negatively correlated with those of Bcl-2. Additionally, downregulation of CAV-1 suppressed apoptosis in BEAS-2B cells.

Conclusion: Our results indicate that CAV-1 plays a pivotal role in regulating the expression of PTEN and the apoptosis-related factors Bax and Bcl-2 in a hyperoxic environment. This regulatory function of CAV-1 on PTEN and its downstream apoptotic pathways suggests a significant correlation between CAV-1 and PTEN-mediated apoptosis. Consequently, CAV-1 is involved in the development of hyperoxic lung injury (HALI) through the PTEN-mediated apoptotic pathway. These findings offer new insights into the molecular mechanisms underlying the pathogenesis of HALI and underscore the potential therapeutic implications of targeting CAV-1 in the management of this condition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信