Lakshmi Sathi Devi , Maria Rosa Gigliobianco , Serena Gabrielli , Dimitrios Agas , Maria Giovanna Sabbieti , Maria Beatrice Morelli , Consuelo Amantini , Cristina Casadidio , Piera Di Martino , Roberta Censi
{"title":"使用巯基烯水凝胶进行双重药物递送的局部癌症治疗。","authors":"Lakshmi Sathi Devi , Maria Rosa Gigliobianco , Serena Gabrielli , Dimitrios Agas , Maria Giovanna Sabbieti , Maria Beatrice Morelli , Consuelo Amantini , Cristina Casadidio , Piera Di Martino , Roberta Censi","doi":"10.1021/acs.biomac.5c00387","DOIUrl":null,"url":null,"abstract":"<div><div>Combinatorial cancer therapy benefits from injectable hydrogels for localized, controlled drug delivery. This study presents a thiol–ene conjugated hydrogel formed by cross-linking thiol-modified hyaluronic acid (HASH) with vinyl sulfone-modified β-cyclodextrin (CDVS). Four formulations (23Gel-16, 23Gel-33, 99Gel-16, 99Gel-33) were synthesized by varying HASH molecular weight (23 or 99 kDa) and CDVS modification (16% or 33%). Rheological analysis confirmed enhanced viscoelasticity with increasing molecular weight and modification (99Gel-33 > 99Gel-16 > 23Gel-33 > 23Gel-16). The system enabled combinatorial delivery of doxorubicin (DOX) and carvacrol (CRV), exhibiting tumor-responsive degradation and tunable release. DOX release accelerated under tumor-mimicking conditions (100% in 46 h vs 58.7% in PBS), while CRV showed an initial burst followed by sustained release. The hydrogel promoted mesenchymal stem cell proliferation and effectively inhibited triple-negative breast cancer cells. This injectable, tumor-responsive hydrogel system offers a promising platform for minimally invasive, personalized cancer therapy.</div></div><div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (137KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 5","pages":"Pages 3234-3254"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Localized Cancer Treatment Using Thiol–Ene Hydrogels for Dual Drug Delivery\",\"authors\":\"Lakshmi Sathi Devi , Maria Rosa Gigliobianco , Serena Gabrielli , Dimitrios Agas , Maria Giovanna Sabbieti , Maria Beatrice Morelli , Consuelo Amantini , Cristina Casadidio , Piera Di Martino , Roberta Censi\",\"doi\":\"10.1021/acs.biomac.5c00387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Combinatorial cancer therapy benefits from injectable hydrogels for localized, controlled drug delivery. This study presents a thiol–ene conjugated hydrogel formed by cross-linking thiol-modified hyaluronic acid (HASH) with vinyl sulfone-modified β-cyclodextrin (CDVS). Four formulations (23Gel-16, 23Gel-33, 99Gel-16, 99Gel-33) were synthesized by varying HASH molecular weight (23 or 99 kDa) and CDVS modification (16% or 33%). Rheological analysis confirmed enhanced viscoelasticity with increasing molecular weight and modification (99Gel-33 > 99Gel-16 > 23Gel-33 > 23Gel-16). The system enabled combinatorial delivery of doxorubicin (DOX) and carvacrol (CRV), exhibiting tumor-responsive degradation and tunable release. DOX release accelerated under tumor-mimicking conditions (100% in 46 h vs 58.7% in PBS), while CRV showed an initial burst followed by sustained release. The hydrogel promoted mesenchymal stem cell proliferation and effectively inhibited triple-negative breast cancer cells. This injectable, tumor-responsive hydrogel system offers a promising platform for minimally invasive, personalized cancer therapy.</div></div><div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (137KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\"26 5\",\"pages\":\"Pages 3234-3254\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1525779725001692\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1525779725001692","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Localized Cancer Treatment Using Thiol–Ene Hydrogels for Dual Drug Delivery
Combinatorial cancer therapy benefits from injectable hydrogels for localized, controlled drug delivery. This study presents a thiol–ene conjugated hydrogel formed by cross-linking thiol-modified hyaluronic acid (HASH) with vinyl sulfone-modified β-cyclodextrin (CDVS). Four formulations (23Gel-16, 23Gel-33, 99Gel-16, 99Gel-33) were synthesized by varying HASH molecular weight (23 or 99 kDa) and CDVS modification (16% or 33%). Rheological analysis confirmed enhanced viscoelasticity with increasing molecular weight and modification (99Gel-33 > 99Gel-16 > 23Gel-33 > 23Gel-16). The system enabled combinatorial delivery of doxorubicin (DOX) and carvacrol (CRV), exhibiting tumor-responsive degradation and tunable release. DOX release accelerated under tumor-mimicking conditions (100% in 46 h vs 58.7% in PBS), while CRV showed an initial burst followed by sustained release. The hydrogel promoted mesenchymal stem cell proliferation and effectively inhibited triple-negative breast cancer cells. This injectable, tumor-responsive hydrogel system offers a promising platform for minimally invasive, personalized cancer therapy.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.