Lingyan Yang, Shan He, Chen Tang, Lei Shi, Zhenhua Liu, Zejie Tian, Hui Li, Xufeng He, Jiding Liao, Yunmei Liu
{"title":"卟啉-刺芒柄花素衍生物的合成及其抗肿瘤活性研究。","authors":"Lingyan Yang, Shan He, Chen Tang, Lei Shi, Zhenhua Liu, Zejie Tian, Hui Li, Xufeng He, Jiding Liao, Yunmei Liu","doi":"10.1007/s11030-025-11183-w","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT) has received much attention in cancer treatment because of its low toxicity and side effects. In this study, we successfully synthesized 14 novel porphyrin-formononetin derivatives. In reactive oxygen species detection experiments, the target compounds 4a-6d caused a significant decrease in the fluorescence intensity of DPBF compared with the porphyrin parent and formononetin feedstock after illumination, and it was found that the target compound had a higher ROS quantum yield, among which the quantum yield of compound 6c was higher. In the in vitro anti-tumor activity assay, the target compounds 4a-6d exhibited a certain degree of growth inhibition against six cancer cells (A549, MDA-MB-231, HCT-116, HGC-27, DU145, and TCCSUP) under light conditions, whereas the cytotoxicity of the target compounds against the normal cells H9c2 was less. The results of the scratch assay showed that 6c could inhibit the growth of tumor cells by inhibiting the migration of DU145 cells. The experimental results indicate that the target compounds achieve the synergistic effect of PDT and chemotherapy.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of porphyrin-formononetin derivatives and their anti-tumor activity studies.\",\"authors\":\"Lingyan Yang, Shan He, Chen Tang, Lei Shi, Zhenhua Liu, Zejie Tian, Hui Li, Xufeng He, Jiding Liao, Yunmei Liu\",\"doi\":\"10.1007/s11030-025-11183-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photodynamic therapy (PDT) has received much attention in cancer treatment because of its low toxicity and side effects. In this study, we successfully synthesized 14 novel porphyrin-formononetin derivatives. In reactive oxygen species detection experiments, the target compounds 4a-6d caused a significant decrease in the fluorescence intensity of DPBF compared with the porphyrin parent and formononetin feedstock after illumination, and it was found that the target compound had a higher ROS quantum yield, among which the quantum yield of compound 6c was higher. In the in vitro anti-tumor activity assay, the target compounds 4a-6d exhibited a certain degree of growth inhibition against six cancer cells (A549, MDA-MB-231, HCT-116, HGC-27, DU145, and TCCSUP) under light conditions, whereas the cytotoxicity of the target compounds against the normal cells H9c2 was less. The results of the scratch assay showed that 6c could inhibit the growth of tumor cells by inhibiting the migration of DU145 cells. The experimental results indicate that the target compounds achieve the synergistic effect of PDT and chemotherapy.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-025-11183-w\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11183-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Synthesis of porphyrin-formononetin derivatives and their anti-tumor activity studies.
Photodynamic therapy (PDT) has received much attention in cancer treatment because of its low toxicity and side effects. In this study, we successfully synthesized 14 novel porphyrin-formononetin derivatives. In reactive oxygen species detection experiments, the target compounds 4a-6d caused a significant decrease in the fluorescence intensity of DPBF compared with the porphyrin parent and formononetin feedstock after illumination, and it was found that the target compound had a higher ROS quantum yield, among which the quantum yield of compound 6c was higher. In the in vitro anti-tumor activity assay, the target compounds 4a-6d exhibited a certain degree of growth inhibition against six cancer cells (A549, MDA-MB-231, HCT-116, HGC-27, DU145, and TCCSUP) under light conditions, whereas the cytotoxicity of the target compounds against the normal cells H9c2 was less. The results of the scratch assay showed that 6c could inhibit the growth of tumor cells by inhibiting the migration of DU145 cells. The experimental results indicate that the target compounds achieve the synergistic effect of PDT and chemotherapy.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;