Monica Rigoletto, María Rapp, Amaya Arencibia, María-José López-Muñoz, Maria Laura Tummino, Nieves Fernández de Paz, Enzo Laurenti
{"title":"大豆壳功能化纤维素对汞的吸附研究。","authors":"Monica Rigoletto, María Rapp, Amaya Arencibia, María-José López-Muñoz, Maria Laura Tummino, Nieves Fernández de Paz, Enzo Laurenti","doi":"10.1002/cplu.202400707","DOIUrl":null,"url":null,"abstract":"<p><p>The presence of potentially toxic elements (PTEs) in drinking water and the food chain is a well-known hazard to human health. Among PTEs, mercury is particularly dangerous for humans and other living organisms due to its wider effects on internal organs. Hg contamination is a critical issue for water bodies used for aquaculture, making its elimination mandatory. Among the techniques proposed for Hg removal, adsorption is advantageous because of its versatility, absence of secondary pollution, and relatively low cost, especially when adsorbents can be obtained from waste materials. In this article, adsorbent materials are synthesized by introducing thiols and primary amino groups into cellulose fibers isolated from soybean hulls. After characterization, the ability of the materials to remove mercury from both ultrapure and aquaculture water solutions is tested. The results confirm the affinity of Hg for thiol groups, leading to the adsorption of 44 mg(Hg)/g in a wide pH range. The amino-modified material adsorbs ≈50% Hg less than the thiol-functionalized one. Test in real water shows that organic matter and salts influence the Hg adsorption process, without affecting the overall efficiency. Finally, in real water, a final concentration below the Hg legal limit for human consumption (1 μg L<sup>-1</sup>) is found.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e2400707"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption of Mercury in Aqueous Solutions by Functionalized Cellulose Extracted from Soybean Hulls.\",\"authors\":\"Monica Rigoletto, María Rapp, Amaya Arencibia, María-José López-Muñoz, Maria Laura Tummino, Nieves Fernández de Paz, Enzo Laurenti\",\"doi\":\"10.1002/cplu.202400707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The presence of potentially toxic elements (PTEs) in drinking water and the food chain is a well-known hazard to human health. Among PTEs, mercury is particularly dangerous for humans and other living organisms due to its wider effects on internal organs. Hg contamination is a critical issue for water bodies used for aquaculture, making its elimination mandatory. Among the techniques proposed for Hg removal, adsorption is advantageous because of its versatility, absence of secondary pollution, and relatively low cost, especially when adsorbents can be obtained from waste materials. In this article, adsorbent materials are synthesized by introducing thiols and primary amino groups into cellulose fibers isolated from soybean hulls. After characterization, the ability of the materials to remove mercury from both ultrapure and aquaculture water solutions is tested. The results confirm the affinity of Hg for thiol groups, leading to the adsorption of 44 mg(Hg)/g in a wide pH range. The amino-modified material adsorbs ≈50% Hg less than the thiol-functionalized one. Test in real water shows that organic matter and salts influence the Hg adsorption process, without affecting the overall efficiency. Finally, in real water, a final concentration below the Hg legal limit for human consumption (1 μg L<sup>-1</sup>) is found.</p>\",\"PeriodicalId\":148,\"journal\":{\"name\":\"ChemPlusChem\",\"volume\":\" \",\"pages\":\"e2400707\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPlusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cplu.202400707\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202400707","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Adsorption of Mercury in Aqueous Solutions by Functionalized Cellulose Extracted from Soybean Hulls.
The presence of potentially toxic elements (PTEs) in drinking water and the food chain is a well-known hazard to human health. Among PTEs, mercury is particularly dangerous for humans and other living organisms due to its wider effects on internal organs. Hg contamination is a critical issue for water bodies used for aquaculture, making its elimination mandatory. Among the techniques proposed for Hg removal, adsorption is advantageous because of its versatility, absence of secondary pollution, and relatively low cost, especially when adsorbents can be obtained from waste materials. In this article, adsorbent materials are synthesized by introducing thiols and primary amino groups into cellulose fibers isolated from soybean hulls. After characterization, the ability of the materials to remove mercury from both ultrapure and aquaculture water solutions is tested. The results confirm the affinity of Hg for thiol groups, leading to the adsorption of 44 mg(Hg)/g in a wide pH range. The amino-modified material adsorbs ≈50% Hg less than the thiol-functionalized one. Test in real water shows that organic matter and salts influence the Hg adsorption process, without affecting the overall efficiency. Finally, in real water, a final concentration below the Hg legal limit for human consumption (1 μg L-1) is found.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.