Alessio Riorda, Viviana Negro, Antonio Marco Pantaleo, Francesco Matteucci, Nilay Shah, David Chiaramonti
{"title":"生物质可持续氢:它对欧洲去化石化目标的潜在贡献是什么?","authors":"Alessio Riorda, Viviana Negro, Antonio Marco Pantaleo, Francesco Matteucci, Nilay Shah, David Chiaramonti","doi":"10.1021/acs.energyfuels.4c05085","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the potential role of hydrogen production from biomass in the EU hydrogen objectives. With the EU aiming to produce 10 million tons of renewable hydrogen by 2030 and significantly scaling this production by 2050, diverse hydrogen production pathways must be explored. Our research focuses on assessing whether biomass-derived hydrogen can serve as a viable and substantial component of the hydrogen production mix alongside and complementing established methods such as electrolysis powered by renewable electricity. Through a comprehensive literature review, the main hydrogen production pathways from biomass have been assessed, including thermochemical and biological methods, with an emphasis on hydrogen yield, production costs, and technology readiness levels (TRLs). The work also considers the availability of biomass resources and potential production scenarios for 2030 and 2050. Our findings suggest that biomass-derived hydrogen can meaningfully contribute to the defossilization of the hydrogen sector, particularly in the midterm scenario for 2030. The analysis suggests that biomass has the potential to contribute a substantial share of the EU's 2030 hydrogen target, ranging from under 0.1 Mt to over 16 Mt per year. Biomass-derived hydrogen offers additional flexibility and security of supply in the transition to a sustainable hydrogen economy, other than the possibility to benefit from negative emissions in some cases and added value from the coproduction of defossilized materials and chemicals, relying on domestic resources available in Europe.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 13","pages":"6412-6425"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973970/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sustainable Hydrogen from Biomass: What Is Its Potential Contribution to the European Defossilization Targets?\",\"authors\":\"Alessio Riorda, Viviana Negro, Antonio Marco Pantaleo, Francesco Matteucci, Nilay Shah, David Chiaramonti\",\"doi\":\"10.1021/acs.energyfuels.4c05085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the potential role of hydrogen production from biomass in the EU hydrogen objectives. With the EU aiming to produce 10 million tons of renewable hydrogen by 2030 and significantly scaling this production by 2050, diverse hydrogen production pathways must be explored. Our research focuses on assessing whether biomass-derived hydrogen can serve as a viable and substantial component of the hydrogen production mix alongside and complementing established methods such as electrolysis powered by renewable electricity. Through a comprehensive literature review, the main hydrogen production pathways from biomass have been assessed, including thermochemical and biological methods, with an emphasis on hydrogen yield, production costs, and technology readiness levels (TRLs). The work also considers the availability of biomass resources and potential production scenarios for 2030 and 2050. Our findings suggest that biomass-derived hydrogen can meaningfully contribute to the defossilization of the hydrogen sector, particularly in the midterm scenario for 2030. The analysis suggests that biomass has the potential to contribute a substantial share of the EU's 2030 hydrogen target, ranging from under 0.1 Mt to over 16 Mt per year. Biomass-derived hydrogen offers additional flexibility and security of supply in the transition to a sustainable hydrogen economy, other than the possibility to benefit from negative emissions in some cases and added value from the coproduction of defossilized materials and chemicals, relying on domestic resources available in Europe.</p>\",\"PeriodicalId\":35,\"journal\":{\"name\":\"Energy & Fuels\",\"volume\":\"39 13\",\"pages\":\"6412-6425\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973970/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Fuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.energyfuels.4c05085\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/3 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.energyfuels.4c05085","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/3 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Sustainable Hydrogen from Biomass: What Is Its Potential Contribution to the European Defossilization Targets?
This study investigates the potential role of hydrogen production from biomass in the EU hydrogen objectives. With the EU aiming to produce 10 million tons of renewable hydrogen by 2030 and significantly scaling this production by 2050, diverse hydrogen production pathways must be explored. Our research focuses on assessing whether biomass-derived hydrogen can serve as a viable and substantial component of the hydrogen production mix alongside and complementing established methods such as electrolysis powered by renewable electricity. Through a comprehensive literature review, the main hydrogen production pathways from biomass have been assessed, including thermochemical and biological methods, with an emphasis on hydrogen yield, production costs, and technology readiness levels (TRLs). The work also considers the availability of biomass resources and potential production scenarios for 2030 and 2050. Our findings suggest that biomass-derived hydrogen can meaningfully contribute to the defossilization of the hydrogen sector, particularly in the midterm scenario for 2030. The analysis suggests that biomass has the potential to contribute a substantial share of the EU's 2030 hydrogen target, ranging from under 0.1 Mt to over 16 Mt per year. Biomass-derived hydrogen offers additional flexibility and security of supply in the transition to a sustainable hydrogen economy, other than the possibility to benefit from negative emissions in some cases and added value from the coproduction of defossilized materials and chemicals, relying on domestic resources available in Europe.
期刊介绍:
Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.