石墨烯中的DUV双共振拉曼光谱和干涉效应:第一性原理计算

IF 2.4 3区 化学 Q2 SPECTROSCOPY
Ye Zhang, Renhui Liu, Jianqi Huang, Nguyen Tuan Hung, Riichiro Saito, Teng Yang, Zhidong Zhang
{"title":"石墨烯中的DUV双共振拉曼光谱和干涉效应:第一性原理计算","authors":"Ye Zhang,&nbsp;Renhui Liu,&nbsp;Jianqi Huang,&nbsp;Nguyen Tuan Hung,&nbsp;Riichiro Saito,&nbsp;Teng Yang,&nbsp;Zhidong Zhang","doi":"10.1002/jrs.6768","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We calculate double-resonance Raman (DRR) spectra of monolayer graphene by first-principles density functional calculation, for wide laser excitation energies from the near-infrared (1.58 eV) to the deep-ultraviolet (DUV, 5.41 eV) region. When laser excitation energy, \n<span></span><math>\n <msub>\n <mrow>\n <mi>E</mi>\n </mrow>\n <mrow>\n <mi>L</mi>\n </mrow>\n </msub></math>, goes into the DUV region, Raman peak wavenumber for G\n<span></span><math>\n <msup>\n <mrow></mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup></math> band switches from red-shift to blue-shift and for 2D\n<span></span><math>\n <msup>\n <mrow></mrow>\n <mrow>\n <mo>′</mo>\n </mrow>\n </msup></math> band switches from red-shift to constant, in contrast to the continuous blue-shift of G\n<span></span><math>\n <msup>\n <mrow></mrow>\n <mrow>\n <mo>′</mo>\n </mrow>\n </msup></math> band. Raman intensity of the three bands generally decreases with increasing \n<span></span><math>\n <msub>\n <mrow>\n <mi>E</mi>\n </mrow>\n <mrow>\n <mi>L</mi>\n </mrow>\n </msub></math>, except for \n<span></span><math>\n <msub>\n <mrow>\n <mi>E</mi>\n </mrow>\n <mrow>\n <mi>L</mi>\n </mrow>\n </msub></math> around 4.08 eV where Raman intensity diverges due to van Hove singularity of electron density of states. The combined two-phonon modes change with \n<span></span><math>\n <msub>\n <mrow>\n <mi>E</mi>\n </mrow>\n <mrow>\n <mi>L</mi>\n </mrow>\n </msub></math> for both G\n<span></span><math>\n <msup>\n <mrow></mrow>\n <mrow>\n <mo>′</mo>\n </mrow>\n </msup></math> and G\n<span></span><math>\n <msup>\n <mrow></mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup></math> bands (e.g., from 2LO to 2TO and back to 2LO for G\n<span></span><math>\n <msup>\n <mrow></mrow>\n <mrow>\n <mo>′</mo>\n </mrow>\n </msup></math> and from LA + LO/TO to TA + LO/TO for G\n<span></span><math>\n <msup>\n <mrow></mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup></math>) but remain 2LO for 2D\n<span></span><math>\n <msup>\n <mrow></mrow>\n <mrow>\n <mo>′</mo>\n </mrow>\n </msup></math> band. Further, the dominant DRR scattering process of G\n<span></span><math>\n <msup>\n <mrow></mrow>\n <mrow>\n <mo>′</mo>\n </mrow>\n </msup></math> band changes from the electron-hole (\n<span></span><math>\n <mi>e</mi>\n <mi>h</mi></math> or \n<span></span><math>\n <mi>h</mi>\n <mi>e</mi></math>) scattering processes to the \n<span></span><math>\n <mi>e</mi>\n <mi>e</mi></math> scattering processes as \n<span></span><math>\n <msub>\n <mrow>\n <mi>E</mi>\n </mrow>\n <mrow>\n <mi>L</mi>\n </mrow>\n </msub></math> goes into the DUV region, since the Dirac energy bands become asymmetric between \n<span></span><math>\n <mi>π</mi></math> and \n<span></span><math>\n <msup>\n <mrow>\n <mi>π</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup></math> band that suppresses the \n<span></span><math>\n <mi>e</mi>\n <mi>h</mi></math> process and the Raman intensity. Another factor to suppress the Raman intensity is the quantum interference effect between four scattering processes (\n<span></span><math>\n <mi>e</mi>\n <mi>h</mi>\n <mo>,</mo>\n <mspace></mspace>\n <mi>h</mi>\n <mi>e</mi>\n <mo>,</mo>\n <mspace></mspace>\n <mi>e</mi>\n <mi>e</mi>\n <mo>,</mo>\n <mspace></mspace>\n <mi>h</mi>\n <mi>h</mi></math>) which changes from constructive to destructive interference and finally to no interference with increasing \n<span></span><math>\n <msub>\n <mrow>\n <mi>E</mi>\n </mrow>\n <mrow>\n <mi>L</mi>\n </mrow>\n </msub></math>. We calculate \n<span></span><math>\n <msub>\n <mrow>\n <mi>E</mi>\n </mrow>\n <mrow>\n <mi>L</mi>\n </mrow>\n </msub></math>-dependent Raman tensor of the three bands and polarized Raman spectra, which further support the interference effect. The calculated results are directly compared and consistent with the experimental results.</p>\n </div>","PeriodicalId":16926,"journal":{"name":"Journal of Raman Spectroscopy","volume":"56 4","pages":"316-323"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DUV Double-Resonant Raman Spectra and Interference Effect in Graphene: First-Principles Calculations\",\"authors\":\"Ye Zhang,&nbsp;Renhui Liu,&nbsp;Jianqi Huang,&nbsp;Nguyen Tuan Hung,&nbsp;Riichiro Saito,&nbsp;Teng Yang,&nbsp;Zhidong Zhang\",\"doi\":\"10.1002/jrs.6768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We calculate double-resonance Raman (DRR) spectra of monolayer graphene by first-principles density functional calculation, for wide laser excitation energies from the near-infrared (1.58 eV) to the deep-ultraviolet (DUV, 5.41 eV) region. When laser excitation energy, \\n<span></span><math>\\n <msub>\\n <mrow>\\n <mi>E</mi>\\n </mrow>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n </msub></math>, goes into the DUV region, Raman peak wavenumber for G\\n<span></span><math>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mo>∗</mo>\\n </mrow>\\n </msup></math> band switches from red-shift to blue-shift and for 2D\\n<span></span><math>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mo>′</mo>\\n </mrow>\\n </msup></math> band switches from red-shift to constant, in contrast to the continuous blue-shift of G\\n<span></span><math>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mo>′</mo>\\n </mrow>\\n </msup></math> band. Raman intensity of the three bands generally decreases with increasing \\n<span></span><math>\\n <msub>\\n <mrow>\\n <mi>E</mi>\\n </mrow>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n </msub></math>, except for \\n<span></span><math>\\n <msub>\\n <mrow>\\n <mi>E</mi>\\n </mrow>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n </msub></math> around 4.08 eV where Raman intensity diverges due to van Hove singularity of electron density of states. The combined two-phonon modes change with \\n<span></span><math>\\n <msub>\\n <mrow>\\n <mi>E</mi>\\n </mrow>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n </msub></math> for both G\\n<span></span><math>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mo>′</mo>\\n </mrow>\\n </msup></math> and G\\n<span></span><math>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mo>∗</mo>\\n </mrow>\\n </msup></math> bands (e.g., from 2LO to 2TO and back to 2LO for G\\n<span></span><math>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mo>′</mo>\\n </mrow>\\n </msup></math> and from LA + LO/TO to TA + LO/TO for G\\n<span></span><math>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mo>∗</mo>\\n </mrow>\\n </msup></math>) but remain 2LO for 2D\\n<span></span><math>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mo>′</mo>\\n </mrow>\\n </msup></math> band. Further, the dominant DRR scattering process of G\\n<span></span><math>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mo>′</mo>\\n </mrow>\\n </msup></math> band changes from the electron-hole (\\n<span></span><math>\\n <mi>e</mi>\\n <mi>h</mi></math> or \\n<span></span><math>\\n <mi>h</mi>\\n <mi>e</mi></math>) scattering processes to the \\n<span></span><math>\\n <mi>e</mi>\\n <mi>e</mi></math> scattering processes as \\n<span></span><math>\\n <msub>\\n <mrow>\\n <mi>E</mi>\\n </mrow>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n </msub></math> goes into the DUV region, since the Dirac energy bands become asymmetric between \\n<span></span><math>\\n <mi>π</mi></math> and \\n<span></span><math>\\n <msup>\\n <mrow>\\n <mi>π</mi>\\n </mrow>\\n <mrow>\\n <mo>∗</mo>\\n </mrow>\\n </msup></math> band that suppresses the \\n<span></span><math>\\n <mi>e</mi>\\n <mi>h</mi></math> process and the Raman intensity. Another factor to suppress the Raman intensity is the quantum interference effect between four scattering processes (\\n<span></span><math>\\n <mi>e</mi>\\n <mi>h</mi>\\n <mo>,</mo>\\n <mspace></mspace>\\n <mi>h</mi>\\n <mi>e</mi>\\n <mo>,</mo>\\n <mspace></mspace>\\n <mi>e</mi>\\n <mi>e</mi>\\n <mo>,</mo>\\n <mspace></mspace>\\n <mi>h</mi>\\n <mi>h</mi></math>) which changes from constructive to destructive interference and finally to no interference with increasing \\n<span></span><math>\\n <msub>\\n <mrow>\\n <mi>E</mi>\\n </mrow>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n </msub></math>. We calculate \\n<span></span><math>\\n <msub>\\n <mrow>\\n <mi>E</mi>\\n </mrow>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n </msub></math>-dependent Raman tensor of the three bands and polarized Raman spectra, which further support the interference effect. The calculated results are directly compared and consistent with the experimental results.</p>\\n </div>\",\"PeriodicalId\":16926,\"journal\":{\"name\":\"Journal of Raman Spectroscopy\",\"volume\":\"56 4\",\"pages\":\"316-323\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Raman Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jrs.6768\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Raman Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrs.6768","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

在近红外(1.58 eV)至深紫外(DUV, 5.41 eV)范围内,采用第一性原理密度泛函计算了单层石墨烯的双共振拉曼(DRR)光谱。当激光激发能E L进入DUV区后,G *波段的拉曼峰波数由红移变为蓝移,2D波段的拉曼峰波数由红移变为常数;与G波段的连续蓝移形成对比。三个波段的拉曼强度一般随电子密度的增大而减小,但在电子密度约为4.08 eV时,由于态电子密度的van Hove奇点,拉曼强度发生发散。组合双声子模式在G '和G *波段随E L变化(例如:G′波段从2LO到2TO再回到2LO, G *波段从LA + LO/ to到TA + LO/ to),但在2D′波段保持2LO。随着e - L进入DUV区,G '波段的DRR主要散射过程由电子空穴(e h或he)散射过程转变为e e散射过程;因为狄拉克能带在π和π *带之间变得不对称,这抑制了e - h过程和拉曼强度。抑制拉曼强度的另一个因素是四个散射过程(e h, ee, ee, ee, ee, ee, ee,h h),随着E L的增加,从相消干涉到相消干涉,最后到无干涉。我们计算了三个波段与E - L相关的拉曼张量和偏振拉曼光谱,进一步支持了干涉效应。将计算结果与实验结果进行了直接比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

DUV Double-Resonant Raman Spectra and Interference Effect in Graphene: First-Principles Calculations

DUV Double-Resonant Raman Spectra and Interference Effect in Graphene: First-Principles Calculations

We calculate double-resonance Raman (DRR) spectra of monolayer graphene by first-principles density functional calculation, for wide laser excitation energies from the near-infrared (1.58 eV) to the deep-ultraviolet (DUV, 5.41 eV) region. When laser excitation energy, E L , goes into the DUV region, Raman peak wavenumber for G band switches from red-shift to blue-shift and for 2D band switches from red-shift to constant, in contrast to the continuous blue-shift of G band. Raman intensity of the three bands generally decreases with increasing E L , except for E L around 4.08 eV where Raman intensity diverges due to van Hove singularity of electron density of states. The combined two-phonon modes change with E L for both G and G bands (e.g., from 2LO to 2TO and back to 2LO for G and from LA + LO/TO to TA + LO/TO for G ) but remain 2LO for 2D band. Further, the dominant DRR scattering process of G band changes from the electron-hole ( e h or h e) scattering processes to the e e scattering processes as E L goes into the DUV region, since the Dirac energy bands become asymmetric between π and π band that suppresses the e h process and the Raman intensity. Another factor to suppress the Raman intensity is the quantum interference effect between four scattering processes ( e h , h e , e e , h h) which changes from constructive to destructive interference and finally to no interference with increasing E L . We calculate E L -dependent Raman tensor of the three bands and polarized Raman spectra, which further support the interference effect. The calculated results are directly compared and consistent with the experimental results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
8.00%
发文量
185
审稿时长
3.0 months
期刊介绍: The Journal of Raman Spectroscopy is an international journal dedicated to the publication of original research at the cutting edge of all areas of science and technology related to Raman spectroscopy. The journal seeks to be the central forum for documenting the evolution of the broadly-defined field of Raman spectroscopy that includes an increasing number of rapidly developing techniques and an ever-widening array of interdisciplinary applications. Such topics include time-resolved, coherent and non-linear Raman spectroscopies, nanostructure-based surface-enhanced and tip-enhanced Raman spectroscopies of molecules, resonance Raman to investigate the structure-function relationships and dynamics of biological molecules, linear and nonlinear Raman imaging and microscopy, biomedical applications of Raman, theoretical formalism and advances in quantum computational methodology of all forms of Raman scattering, Raman spectroscopy in archaeology and art, advances in remote Raman sensing and industrial applications, and Raman optical activity of all classes of chiral molecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信