Ye Zhang, Renhui Liu, Jianqi Huang, Nguyen Tuan Hung, Riichiro Saito, Teng Yang, Zhidong Zhang
{"title":"石墨烯中的DUV双共振拉曼光谱和干涉效应:第一性原理计算","authors":"Ye Zhang, Renhui Liu, Jianqi Huang, Nguyen Tuan Hung, Riichiro Saito, Teng Yang, Zhidong Zhang","doi":"10.1002/jrs.6768","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We calculate double-resonance Raman (DRR) spectra of monolayer graphene by first-principles density functional calculation, for wide laser excitation energies from the near-infrared (1.58 eV) to the deep-ultraviolet (DUV, 5.41 eV) region. When laser excitation energy, \n<span></span><math>\n <msub>\n <mrow>\n <mi>E</mi>\n </mrow>\n <mrow>\n <mi>L</mi>\n </mrow>\n </msub></math>, goes into the DUV region, Raman peak wavenumber for G\n<span></span><math>\n <msup>\n <mrow></mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup></math> band switches from red-shift to blue-shift and for 2D\n<span></span><math>\n <msup>\n <mrow></mrow>\n <mrow>\n <mo>′</mo>\n </mrow>\n </msup></math> band switches from red-shift to constant, in contrast to the continuous blue-shift of G\n<span></span><math>\n <msup>\n <mrow></mrow>\n <mrow>\n <mo>′</mo>\n </mrow>\n </msup></math> band. Raman intensity of the three bands generally decreases with increasing \n<span></span><math>\n <msub>\n <mrow>\n <mi>E</mi>\n </mrow>\n <mrow>\n <mi>L</mi>\n </mrow>\n </msub></math>, except for \n<span></span><math>\n <msub>\n <mrow>\n <mi>E</mi>\n </mrow>\n <mrow>\n <mi>L</mi>\n </mrow>\n </msub></math> around 4.08 eV where Raman intensity diverges due to van Hove singularity of electron density of states. The combined two-phonon modes change with \n<span></span><math>\n <msub>\n <mrow>\n <mi>E</mi>\n </mrow>\n <mrow>\n <mi>L</mi>\n </mrow>\n </msub></math> for both G\n<span></span><math>\n <msup>\n <mrow></mrow>\n <mrow>\n <mo>′</mo>\n </mrow>\n </msup></math> and G\n<span></span><math>\n <msup>\n <mrow></mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup></math> bands (e.g., from 2LO to 2TO and back to 2LO for G\n<span></span><math>\n <msup>\n <mrow></mrow>\n <mrow>\n <mo>′</mo>\n </mrow>\n </msup></math> and from LA + LO/TO to TA + LO/TO for G\n<span></span><math>\n <msup>\n <mrow></mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup></math>) but remain 2LO for 2D\n<span></span><math>\n <msup>\n <mrow></mrow>\n <mrow>\n <mo>′</mo>\n </mrow>\n </msup></math> band. Further, the dominant DRR scattering process of G\n<span></span><math>\n <msup>\n <mrow></mrow>\n <mrow>\n <mo>′</mo>\n </mrow>\n </msup></math> band changes from the electron-hole (\n<span></span><math>\n <mi>e</mi>\n <mi>h</mi></math> or \n<span></span><math>\n <mi>h</mi>\n <mi>e</mi></math>) scattering processes to the \n<span></span><math>\n <mi>e</mi>\n <mi>e</mi></math> scattering processes as \n<span></span><math>\n <msub>\n <mrow>\n <mi>E</mi>\n </mrow>\n <mrow>\n <mi>L</mi>\n </mrow>\n </msub></math> goes into the DUV region, since the Dirac energy bands become asymmetric between \n<span></span><math>\n <mi>π</mi></math> and \n<span></span><math>\n <msup>\n <mrow>\n <mi>π</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup></math> band that suppresses the \n<span></span><math>\n <mi>e</mi>\n <mi>h</mi></math> process and the Raman intensity. Another factor to suppress the Raman intensity is the quantum interference effect between four scattering processes (\n<span></span><math>\n <mi>e</mi>\n <mi>h</mi>\n <mo>,</mo>\n <mspace></mspace>\n <mi>h</mi>\n <mi>e</mi>\n <mo>,</mo>\n <mspace></mspace>\n <mi>e</mi>\n <mi>e</mi>\n <mo>,</mo>\n <mspace></mspace>\n <mi>h</mi>\n <mi>h</mi></math>) which changes from constructive to destructive interference and finally to no interference with increasing \n<span></span><math>\n <msub>\n <mrow>\n <mi>E</mi>\n </mrow>\n <mrow>\n <mi>L</mi>\n </mrow>\n </msub></math>. We calculate \n<span></span><math>\n <msub>\n <mrow>\n <mi>E</mi>\n </mrow>\n <mrow>\n <mi>L</mi>\n </mrow>\n </msub></math>-dependent Raman tensor of the three bands and polarized Raman spectra, which further support the interference effect. The calculated results are directly compared and consistent with the experimental results.</p>\n </div>","PeriodicalId":16926,"journal":{"name":"Journal of Raman Spectroscopy","volume":"56 4","pages":"316-323"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DUV Double-Resonant Raman Spectra and Interference Effect in Graphene: First-Principles Calculations\",\"authors\":\"Ye Zhang, Renhui Liu, Jianqi Huang, Nguyen Tuan Hung, Riichiro Saito, Teng Yang, Zhidong Zhang\",\"doi\":\"10.1002/jrs.6768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We calculate double-resonance Raman (DRR) spectra of monolayer graphene by first-principles density functional calculation, for wide laser excitation energies from the near-infrared (1.58 eV) to the deep-ultraviolet (DUV, 5.41 eV) region. When laser excitation energy, \\n<span></span><math>\\n <msub>\\n <mrow>\\n <mi>E</mi>\\n </mrow>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n </msub></math>, goes into the DUV region, Raman peak wavenumber for G\\n<span></span><math>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mo>∗</mo>\\n </mrow>\\n </msup></math> band switches from red-shift to blue-shift and for 2D\\n<span></span><math>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mo>′</mo>\\n </mrow>\\n </msup></math> band switches from red-shift to constant, in contrast to the continuous blue-shift of G\\n<span></span><math>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mo>′</mo>\\n </mrow>\\n </msup></math> band. Raman intensity of the three bands generally decreases with increasing \\n<span></span><math>\\n <msub>\\n <mrow>\\n <mi>E</mi>\\n </mrow>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n </msub></math>, except for \\n<span></span><math>\\n <msub>\\n <mrow>\\n <mi>E</mi>\\n </mrow>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n </msub></math> around 4.08 eV where Raman intensity diverges due to van Hove singularity of electron density of states. The combined two-phonon modes change with \\n<span></span><math>\\n <msub>\\n <mrow>\\n <mi>E</mi>\\n </mrow>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n </msub></math> for both G\\n<span></span><math>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mo>′</mo>\\n </mrow>\\n </msup></math> and G\\n<span></span><math>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mo>∗</mo>\\n </mrow>\\n </msup></math> bands (e.g., from 2LO to 2TO and back to 2LO for G\\n<span></span><math>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mo>′</mo>\\n </mrow>\\n </msup></math> and from LA + LO/TO to TA + LO/TO for G\\n<span></span><math>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mo>∗</mo>\\n </mrow>\\n </msup></math>) but remain 2LO for 2D\\n<span></span><math>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mo>′</mo>\\n </mrow>\\n </msup></math> band. Further, the dominant DRR scattering process of G\\n<span></span><math>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mo>′</mo>\\n </mrow>\\n </msup></math> band changes from the electron-hole (\\n<span></span><math>\\n <mi>e</mi>\\n <mi>h</mi></math> or \\n<span></span><math>\\n <mi>h</mi>\\n <mi>e</mi></math>) scattering processes to the \\n<span></span><math>\\n <mi>e</mi>\\n <mi>e</mi></math> scattering processes as \\n<span></span><math>\\n <msub>\\n <mrow>\\n <mi>E</mi>\\n </mrow>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n </msub></math> goes into the DUV region, since the Dirac energy bands become asymmetric between \\n<span></span><math>\\n <mi>π</mi></math> and \\n<span></span><math>\\n <msup>\\n <mrow>\\n <mi>π</mi>\\n </mrow>\\n <mrow>\\n <mo>∗</mo>\\n </mrow>\\n </msup></math> band that suppresses the \\n<span></span><math>\\n <mi>e</mi>\\n <mi>h</mi></math> process and the Raman intensity. Another factor to suppress the Raman intensity is the quantum interference effect between four scattering processes (\\n<span></span><math>\\n <mi>e</mi>\\n <mi>h</mi>\\n <mo>,</mo>\\n <mspace></mspace>\\n <mi>h</mi>\\n <mi>e</mi>\\n <mo>,</mo>\\n <mspace></mspace>\\n <mi>e</mi>\\n <mi>e</mi>\\n <mo>,</mo>\\n <mspace></mspace>\\n <mi>h</mi>\\n <mi>h</mi></math>) which changes from constructive to destructive interference and finally to no interference with increasing \\n<span></span><math>\\n <msub>\\n <mrow>\\n <mi>E</mi>\\n </mrow>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n </msub></math>. We calculate \\n<span></span><math>\\n <msub>\\n <mrow>\\n <mi>E</mi>\\n </mrow>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n </msub></math>-dependent Raman tensor of the three bands and polarized Raman spectra, which further support the interference effect. The calculated results are directly compared and consistent with the experimental results.</p>\\n </div>\",\"PeriodicalId\":16926,\"journal\":{\"name\":\"Journal of Raman Spectroscopy\",\"volume\":\"56 4\",\"pages\":\"316-323\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Raman Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jrs.6768\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Raman Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrs.6768","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
DUV Double-Resonant Raman Spectra and Interference Effect in Graphene: First-Principles Calculations
We calculate double-resonance Raman (DRR) spectra of monolayer graphene by first-principles density functional calculation, for wide laser excitation energies from the near-infrared (1.58 eV) to the deep-ultraviolet (DUV, 5.41 eV) region. When laser excitation energy,
, goes into the DUV region, Raman peak wavenumber for G
band switches from red-shift to blue-shift and for 2D
band switches from red-shift to constant, in contrast to the continuous blue-shift of G
band. Raman intensity of the three bands generally decreases with increasing
, except for
around 4.08 eV where Raman intensity diverges due to van Hove singularity of electron density of states. The combined two-phonon modes change with
for both G
and G
bands (e.g., from 2LO to 2TO and back to 2LO for G
and from LA + LO/TO to TA + LO/TO for G
) but remain 2LO for 2D
band. Further, the dominant DRR scattering process of G
band changes from the electron-hole (
or
) scattering processes to the
scattering processes as
goes into the DUV region, since the Dirac energy bands become asymmetric between
and
band that suppresses the
process and the Raman intensity. Another factor to suppress the Raman intensity is the quantum interference effect between four scattering processes (
) which changes from constructive to destructive interference and finally to no interference with increasing
. We calculate
-dependent Raman tensor of the three bands and polarized Raman spectra, which further support the interference effect. The calculated results are directly compared and consistent with the experimental results.
期刊介绍:
The Journal of Raman Spectroscopy is an international journal dedicated to the publication of original research at the cutting edge of all areas of science and technology related to Raman spectroscopy. The journal seeks to be the central forum for documenting the evolution of the broadly-defined field of Raman spectroscopy that includes an increasing number of rapidly developing techniques and an ever-widening array of interdisciplinary applications.
Such topics include time-resolved, coherent and non-linear Raman spectroscopies, nanostructure-based surface-enhanced and tip-enhanced Raman spectroscopies of molecules, resonance Raman to investigate the structure-function relationships and dynamics of biological molecules, linear and nonlinear Raman imaging and microscopy, biomedical applications of Raman, theoretical formalism and advances in quantum computational methodology of all forms of Raman scattering, Raman spectroscopy in archaeology and art, advances in remote Raman sensing and industrial applications, and Raman optical activity of all classes of chiral molecules.