NRF2转录因子在炎症性皮肤病中的作用

IF 5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
BioFactors Pub Date : 2025-04-10 DOI:10.1002/biof.70013
Sara Salman, Virginie Paulet, Kévin Hardonnière, Saadia Kerdine-Römer
{"title":"NRF2转录因子在炎症性皮肤病中的作用","authors":"Sara Salman,&nbsp;Virginie Paulet,&nbsp;Kévin Hardonnière,&nbsp;Saadia Kerdine-Römer","doi":"10.1002/biof.70013","DOIUrl":null,"url":null,"abstract":"<p>The skin is the body's largest organ and performs several vital functions, such as controlling the movement of essential substances while protecting against external threats. Although mainly composed of keratinocytes (KCs), the skin also contains a complex network of immune cells that play a critical role in host defense and maintaining skin homeostasis. KCs proliferate in the basal layer of the epidermis and undergo differentiation, altering their functional and phenotypic characteristics. These differentiation steps are crucial for the stratification of the epidermis and the formation of the stratum corneum, ensuring the skin barrier's functions. Exposure to UV, environmental pollutants, or chemicals can lead to an overproduction of reactive species of oxygen (ROS), leading to oxidative stress. To ensure redox homeostasis and prevent damage resulting from the formation of ROS, the skin has an extensive network of antioxidant defense systems, mainly orchestrated by the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway. Indeed, Nrf2 induces the expression of detoxification and antioxidant enzymes and suppresses inductions of pro-inflammatory cytokine genes. In this context, Nrf2 is critical in preserving skin functions such as epidermal differentiation, regulating skin immunity, and managing environmental stresses. Besides, this pathway plays an important role in the pathogenesis of common inflammatory skin diseases such as allergic contact dermatitis, atopic dermatitis, and psoriasis. Therefore, the present review highlights the crucial role of Nrf2 in KCs for maintaining skin homeostasis and regulating skin immunity, as well as its contribution to the pathophysiology of inflammatory skin diseases. Finally, a particular emphasis will be placed on the therapeutic potential of targeting the Nrf2 pathway to alleviate symptoms of these inflammatory skin disorders.</p>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":"51 2","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biof.70013","citationCount":"0","resultStr":"{\"title\":\"The role of NRF2 transcription factor in inflammatory skin diseases\",\"authors\":\"Sara Salman,&nbsp;Virginie Paulet,&nbsp;Kévin Hardonnière,&nbsp;Saadia Kerdine-Römer\",\"doi\":\"10.1002/biof.70013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The skin is the body's largest organ and performs several vital functions, such as controlling the movement of essential substances while protecting against external threats. Although mainly composed of keratinocytes (KCs), the skin also contains a complex network of immune cells that play a critical role in host defense and maintaining skin homeostasis. KCs proliferate in the basal layer of the epidermis and undergo differentiation, altering their functional and phenotypic characteristics. These differentiation steps are crucial for the stratification of the epidermis and the formation of the stratum corneum, ensuring the skin barrier's functions. Exposure to UV, environmental pollutants, or chemicals can lead to an overproduction of reactive species of oxygen (ROS), leading to oxidative stress. To ensure redox homeostasis and prevent damage resulting from the formation of ROS, the skin has an extensive network of antioxidant defense systems, mainly orchestrated by the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway. Indeed, Nrf2 induces the expression of detoxification and antioxidant enzymes and suppresses inductions of pro-inflammatory cytokine genes. In this context, Nrf2 is critical in preserving skin functions such as epidermal differentiation, regulating skin immunity, and managing environmental stresses. Besides, this pathway plays an important role in the pathogenesis of common inflammatory skin diseases such as allergic contact dermatitis, atopic dermatitis, and psoriasis. Therefore, the present review highlights the crucial role of Nrf2 in KCs for maintaining skin homeostasis and regulating skin immunity, as well as its contribution to the pathophysiology of inflammatory skin diseases. Finally, a particular emphasis will be placed on the therapeutic potential of targeting the Nrf2 pathway to alleviate symptoms of these inflammatory skin disorders.</p>\",\"PeriodicalId\":8923,\"journal\":{\"name\":\"BioFactors\",\"volume\":\"51 2\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biof.70013\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioFactors\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/biof.70013\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biof.70013","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

皮肤是人体最大的器官,具有多种重要功能,如控制必需物质的运动,抵御外部威胁。虽然皮肤主要由角质形成细胞(KCs)组成,但它也包含一个复杂的免疫细胞网络,在宿主防御和维持皮肤稳态中发挥关键作用。KCs在表皮的基底层增殖并分化,从而改变了它们的功能和表型特征。这些分化步骤对于表皮的分层和角质层的形成至关重要,从而确保皮肤屏障的功能。暴露在紫外线、环境污染物或化学物质中会导致活性氧(ROS)的过量产生,从而导致氧化应激。为了确保氧化还原稳态和防止ROS形成造成的损伤,皮肤具有广泛的抗氧化防御系统网络,主要由核因子红细胞2相关因子2 (Nrf2)途径协调。事实上,Nrf2诱导解毒和抗氧化酶的表达,抑制促炎细胞因子基因的诱导。在这种情况下,Nrf2在维持皮肤功能,如表皮分化,调节皮肤免疫和管理环境应激方面至关重要。此外,该通路在过敏性接触性皮炎、特应性皮炎、牛皮癣等常见炎症性皮肤病的发病机制中也起着重要作用。因此,本综述强调了Nrf2在KCs中维持皮肤稳态和调节皮肤免疫的关键作用,以及它在炎症性皮肤病的病理生理中的作用。最后,将特别强调靶向Nrf2通路的治疗潜力,以减轻这些炎症性皮肤疾病的症状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The role of NRF2 transcription factor in inflammatory skin diseases

The role of NRF2 transcription factor in inflammatory skin diseases

The skin is the body's largest organ and performs several vital functions, such as controlling the movement of essential substances while protecting against external threats. Although mainly composed of keratinocytes (KCs), the skin also contains a complex network of immune cells that play a critical role in host defense and maintaining skin homeostasis. KCs proliferate in the basal layer of the epidermis and undergo differentiation, altering their functional and phenotypic characteristics. These differentiation steps are crucial for the stratification of the epidermis and the formation of the stratum corneum, ensuring the skin barrier's functions. Exposure to UV, environmental pollutants, or chemicals can lead to an overproduction of reactive species of oxygen (ROS), leading to oxidative stress. To ensure redox homeostasis and prevent damage resulting from the formation of ROS, the skin has an extensive network of antioxidant defense systems, mainly orchestrated by the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway. Indeed, Nrf2 induces the expression of detoxification and antioxidant enzymes and suppresses inductions of pro-inflammatory cytokine genes. In this context, Nrf2 is critical in preserving skin functions such as epidermal differentiation, regulating skin immunity, and managing environmental stresses. Besides, this pathway plays an important role in the pathogenesis of common inflammatory skin diseases such as allergic contact dermatitis, atopic dermatitis, and psoriasis. Therefore, the present review highlights the crucial role of Nrf2 in KCs for maintaining skin homeostasis and regulating skin immunity, as well as its contribution to the pathophysiology of inflammatory skin diseases. Finally, a particular emphasis will be placed on the therapeutic potential of targeting the Nrf2 pathway to alleviate symptoms of these inflammatory skin disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioFactors
BioFactors 生物-内分泌学与代谢
CiteScore
11.50
自引率
3.30%
发文量
96
审稿时长
6-12 weeks
期刊介绍: BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease. The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements. In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信