RO-BEV:面向环视实例预测的鲁棒BEV特征增强

IF 0.7 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhi Yang, Tao Lu, Jiaming Wang, Xiujuan Lang, Shichang Fu, Jifeng Han
{"title":"RO-BEV:面向环视实例预测的鲁棒BEV特征增强","authors":"Zhi Yang,&nbsp;Tao Lu,&nbsp;Jiaming Wang,&nbsp;Xiujuan Lang,&nbsp;Shichang Fu,&nbsp;Jifeng Han","doi":"10.1049/ell2.70207","DOIUrl":null,"url":null,"abstract":"<p>The most existing instance prediction methods often lack practical understanding and enhancement of bird's-eye view (BEV) spatial-temporal features, particularly distant features. To alleviate the above problems, we propose a robust BEV feature enhancement network (RO-BEV). The proposed RO-BEV includes two major components: the novel adaptive linearly increasing dividing (ALID) strategy and the hierarchical cross-scale fusion (HCSF) module. Specifically, the ALID strategy can mitigate instance loss caused by insufficient features by providing a linearly increasing 3D representation to build a robust BEV feature. Then, the proposed HCSF module enhances spatial-temporal BEV features in the latent space to predict vehicle instances by sampling from feature distributions at different scales and timestamps. Experimental results on the nuScenes dataset show that our RO-BEV outperforms existing state-of-the-art methods.</p>","PeriodicalId":11556,"journal":{"name":"Electronics Letters","volume":"61 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.70207","citationCount":"0","resultStr":"{\"title\":\"RO-BEV: Towards Robust BEV Feature Enhancement for Surround-View Instance Prediction\",\"authors\":\"Zhi Yang,&nbsp;Tao Lu,&nbsp;Jiaming Wang,&nbsp;Xiujuan Lang,&nbsp;Shichang Fu,&nbsp;Jifeng Han\",\"doi\":\"10.1049/ell2.70207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The most existing instance prediction methods often lack practical understanding and enhancement of bird's-eye view (BEV) spatial-temporal features, particularly distant features. To alleviate the above problems, we propose a robust BEV feature enhancement network (RO-BEV). The proposed RO-BEV includes two major components: the novel adaptive linearly increasing dividing (ALID) strategy and the hierarchical cross-scale fusion (HCSF) module. Specifically, the ALID strategy can mitigate instance loss caused by insufficient features by providing a linearly increasing 3D representation to build a robust BEV feature. Then, the proposed HCSF module enhances spatial-temporal BEV features in the latent space to predict vehicle instances by sampling from feature distributions at different scales and timestamps. Experimental results on the nuScenes dataset show that our RO-BEV outperforms existing state-of-the-art methods.</p>\",\"PeriodicalId\":11556,\"journal\":{\"name\":\"Electronics Letters\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.70207\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ell2.70207\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ell2.70207","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

现有的实例预测方法往往缺乏对鸟瞰(BEV)时空特征,特别是远距离特征的实际理解和增强。为了解决上述问题,我们提出了一种鲁棒的BEV特征增强网络(RO-BEV)。所提出的RO-BEV包括两个主要组成部分:新型自适应线性递增分割(ALID)策略和分层跨尺度融合(HCSF)模块。具体而言,ALID策略可以通过提供线性增加的3D表示来构建鲁棒的BEV特征,从而减轻由于特征不足而导致的实例损失。然后,提出的HCSF模块增强潜在空间中的时空BEV特征,通过采样不同尺度和时间戳的特征分布来预测车辆实例。在nuScenes数据集上的实验结果表明,我们的RO-BEV优于现有的最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

RO-BEV: Towards Robust BEV Feature Enhancement for Surround-View Instance Prediction

RO-BEV: Towards Robust BEV Feature Enhancement for Surround-View Instance Prediction

The most existing instance prediction methods often lack practical understanding and enhancement of bird's-eye view (BEV) spatial-temporal features, particularly distant features. To alleviate the above problems, we propose a robust BEV feature enhancement network (RO-BEV). The proposed RO-BEV includes two major components: the novel adaptive linearly increasing dividing (ALID) strategy and the hierarchical cross-scale fusion (HCSF) module. Specifically, the ALID strategy can mitigate instance loss caused by insufficient features by providing a linearly increasing 3D representation to build a robust BEV feature. Then, the proposed HCSF module enhances spatial-temporal BEV features in the latent space to predict vehicle instances by sampling from feature distributions at different scales and timestamps. Experimental results on the nuScenes dataset show that our RO-BEV outperforms existing state-of-the-art methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronics Letters
Electronics Letters 工程技术-工程:电子与电气
CiteScore
2.70
自引率
0.00%
发文量
268
审稿时长
3.6 months
期刊介绍: Electronics Letters is an internationally renowned peer-reviewed rapid-communication journal that publishes short original research papers every two weeks. Its broad and interdisciplinary scope covers the latest developments in all electronic engineering related fields including communication, biomedical, optical and device technologies. Electronics Letters also provides further insight into some of the latest developments through special features and interviews. Scope As a journal at the forefront of its field, Electronics Letters publishes papers covering all themes of electronic and electrical engineering. The major themes of the journal are listed below. Antennas and Propagation Biomedical and Bioinspired Technologies, Signal Processing and Applications Control Engineering Electromagnetism: Theory, Materials and Devices Electronic Circuits and Systems Image, Video and Vision Processing and Applications Information, Computing and Communications Instrumentation and Measurement Microwave Technology Optical Communications Photonics and Opto-Electronics Power Electronics, Energy and Sustainability Radar, Sonar and Navigation Semiconductor Technology Signal Processing MIMO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信