异质性Hermitian-Yang-Mills等价

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Jock McOrist, Sebastien Picard, Eirik Eik Svanes
{"title":"异质性Hermitian-Yang-Mills等价","authors":"Jock McOrist,&nbsp;Sebastien Picard,&nbsp;Eirik Eik Svanes","doi":"10.1007/s00220-025-05272-y","DOIUrl":null,"url":null,"abstract":"<div><p>We consider <span>\\(N=1\\)</span>, <span>\\(d=4\\)</span> vacua of heterotic theories in the large radius limit in which <span>\\({{\\alpha }^{\\backprime }\\,}\\ll 1\\)</span>. We construct a real differential operator <span>\\(\\mathcal {D}= D+\\bar{D}\\)</span> on an extension bundle <span>\\((Q, \\mathcal {D})\\)</span> with underlying topology <span>\\(Q=(T^{1,0}X)^* \\oplus \\textrm{End} \\, E \\oplus T^{1,0} X\\)</span> whose curvature is holomorphic and Hermitian–Yang–Mills with respect to the complex structure and metric on the underlying non-Kähler complex 3-fold <i>X</i> if and only if the heterotic supersymmetry equations and Bianchi identity are satisfied. This is suggestive of an analogue of the Donaldson–Uhlenbeck–Yau correspondence for heterotic vacua of this type.\n</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05272-y.pdf","citationCount":"0","resultStr":"{\"title\":\"A Heterotic Hermitian–Yang–Mills Equivalence\",\"authors\":\"Jock McOrist,&nbsp;Sebastien Picard,&nbsp;Eirik Eik Svanes\",\"doi\":\"10.1007/s00220-025-05272-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider <span>\\\\(N=1\\\\)</span>, <span>\\\\(d=4\\\\)</span> vacua of heterotic theories in the large radius limit in which <span>\\\\({{\\\\alpha }^{\\\\backprime }\\\\,}\\\\ll 1\\\\)</span>. We construct a real differential operator <span>\\\\(\\\\mathcal {D}= D+\\\\bar{D}\\\\)</span> on an extension bundle <span>\\\\((Q, \\\\mathcal {D})\\\\)</span> with underlying topology <span>\\\\(Q=(T^{1,0}X)^* \\\\oplus \\\\textrm{End} \\\\, E \\\\oplus T^{1,0} X\\\\)</span> whose curvature is holomorphic and Hermitian–Yang–Mills with respect to the complex structure and metric on the underlying non-Kähler complex 3-fold <i>X</i> if and only if the heterotic supersymmetry equations and Bianchi identity are satisfied. This is suggestive of an analogue of the Donaldson–Uhlenbeck–Yau correspondence for heterotic vacua of this type.\\n</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 5\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-025-05272-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05272-y\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05272-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑\(N=1\)、\(d=4\)异质理论在大半径极限下的真空,其中\({{\alpha }^{\backprime }\,}\ll 1\)。当且仅当杂散超对称方程和Bianchi恒等式满足时,我们在具有底层拓扑\(Q=(T^{1,0}X)^* \oplus \textrm{End} \, E \oplus T^{1,0} X\)的扩展束\((Q, \mathcal {D})\)上构造了一个实微分算子\(\mathcal {D}= D+\bar{D}\),该扩展束对于底层non-Kähler复3重X的复结构和度规是全纯和Hermitian-Yang-Mills的。这暗示了这种类型的杂种真空的Donaldson-Uhlenbeck-Yau对应的类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Heterotic Hermitian–Yang–Mills Equivalence

We consider \(N=1\), \(d=4\) vacua of heterotic theories in the large radius limit in which \({{\alpha }^{\backprime }\,}\ll 1\). We construct a real differential operator \(\mathcal {D}= D+\bar{D}\) on an extension bundle \((Q, \mathcal {D})\) with underlying topology \(Q=(T^{1,0}X)^* \oplus \textrm{End} \, E \oplus T^{1,0} X\) whose curvature is holomorphic and Hermitian–Yang–Mills with respect to the complex structure and metric on the underlying non-Kähler complex 3-fold X if and only if the heterotic supersymmetry equations and Bianchi identity are satisfied. This is suggestive of an analogue of the Donaldson–Uhlenbeck–Yau correspondence for heterotic vacua of this type.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信