二维等熵欧拉的接触不连续在一维情况下是唯一的,而在其他情况下则是非唯一的

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Sam G. Krupa, László Székelyhidi Jr.
{"title":"二维等熵欧拉的接触不连续在一维情况下是唯一的,而在其他情况下则是非唯一的","authors":"Sam G. Krupa,&nbsp;László Székelyhidi Jr.","doi":"10.1007/s00220-025-05278-6","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a general framework for studying non-uniqueness of the Riemann problem for the isentropic compressible Euler system in two spatial dimensions, and in this paper we present the most delicate result of our method: non-uniqueness of the contact discontinuity. Our approach is computational, and uses the pressure law as an additional degree of freedom. The stability of the contact discontinuities for this system is a major open problem (see Chen and Wang, in: Nonlinear partial differential equations, Abel Symposia, vol 7, Springer, Heidelberg, 2012). We find a smooth pressure law <i>p</i>, verifying the physically relevant condition <span>\\(p'&gt;0\\)</span>, such that for the isentropic compressible Euler system with this pressure law, contact discontinuity initial data is wildly non-unique in the class of bounded, admissible weak solutions. This result resolves the question of uniqueness for contact discontinuity solutions in the compressible regime. Moreover, in the <i>same regularity class</i> in which we have non-uniqueness of the contact discontinuity, i.e. <span>\\(L^\\infty \\)</span>, with no <i>BV</i> regularity or self-similarity, we show that the classical contact discontinuity solution to the two-dimensional isentropic compressible Euler system is in fact <i>unique</i> in the class of bounded, admissible weak solutions if we restrict to 1-D solutions.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contact Discontinuities for 2-D Isentropic Euler are Unique in 1-D but Wildly Non-unique Otherwise\",\"authors\":\"Sam G. Krupa,&nbsp;László Székelyhidi Jr.\",\"doi\":\"10.1007/s00220-025-05278-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We develop a general framework for studying non-uniqueness of the Riemann problem for the isentropic compressible Euler system in two spatial dimensions, and in this paper we present the most delicate result of our method: non-uniqueness of the contact discontinuity. Our approach is computational, and uses the pressure law as an additional degree of freedom. The stability of the contact discontinuities for this system is a major open problem (see Chen and Wang, in: Nonlinear partial differential equations, Abel Symposia, vol 7, Springer, Heidelberg, 2012). We find a smooth pressure law <i>p</i>, verifying the physically relevant condition <span>\\\\(p'&gt;0\\\\)</span>, such that for the isentropic compressible Euler system with this pressure law, contact discontinuity initial data is wildly non-unique in the class of bounded, admissible weak solutions. This result resolves the question of uniqueness for contact discontinuity solutions in the compressible regime. Moreover, in the <i>same regularity class</i> in which we have non-uniqueness of the contact discontinuity, i.e. <span>\\\\(L^\\\\infty \\\\)</span>, with no <i>BV</i> regularity or self-similarity, we show that the classical contact discontinuity solution to the two-dimensional isentropic compressible Euler system is in fact <i>unique</i> in the class of bounded, admissible weak solutions if we restrict to 1-D solutions.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 5\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05278-6\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05278-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了二维等熵可压缩欧拉系统黎曼问题非唯一性研究的一般框架,并给出了该方法中最精细的结果:接触不连续的非唯一性。我们的方法是计算的,使用压力定律作为一个额外的自由度。该系统的接触不连续面的稳定性是一个主要的开放问题(见Chen和Wang, in: Nonlinear partial differential equations, Abel Symposia, vol 7,施普林格,Heidelberg, 2012)。我们发现了一个光滑的压力律p,验证了物理上的相关条件\(p'>0\),使得对于具有该压力律的等熵可压缩欧拉系统,接触不连续初始数据在有界的可容许弱解类中是广泛非唯一的。这一结果解决了可压缩区域接触不连续解的唯一性问题。此外,在我们具有接触不连续的非唯一性的同一正则类中,即\(L^\infty \),没有BV正则性或自相似,我们证明了二维等熵可压缩欧拉系统的经典接触不连续解在有界可容许弱解类中实际上是唯一的,如果我们将其限制为一维解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Contact Discontinuities for 2-D Isentropic Euler are Unique in 1-D but Wildly Non-unique Otherwise

Contact Discontinuities for 2-D Isentropic Euler are Unique in 1-D but Wildly Non-unique Otherwise

We develop a general framework for studying non-uniqueness of the Riemann problem for the isentropic compressible Euler system in two spatial dimensions, and in this paper we present the most delicate result of our method: non-uniqueness of the contact discontinuity. Our approach is computational, and uses the pressure law as an additional degree of freedom. The stability of the contact discontinuities for this system is a major open problem (see Chen and Wang, in: Nonlinear partial differential equations, Abel Symposia, vol 7, Springer, Heidelberg, 2012). We find a smooth pressure law p, verifying the physically relevant condition \(p'>0\), such that for the isentropic compressible Euler system with this pressure law, contact discontinuity initial data is wildly non-unique in the class of bounded, admissible weak solutions. This result resolves the question of uniqueness for contact discontinuity solutions in the compressible regime. Moreover, in the same regularity class in which we have non-uniqueness of the contact discontinuity, i.e. \(L^\infty \), with no BV regularity or self-similarity, we show that the classical contact discontinuity solution to the two-dimensional isentropic compressible Euler system is in fact unique in the class of bounded, admissible weak solutions if we restrict to 1-D solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信