{"title":"基于氨基化蔗糖固化环氧树脂和羧甲基纤维素纳米纤维的仿生复合材料的制备与性能","authors":"Jun Watanabe, Kaito Sugane, Mitsuhiro Shibata","doi":"10.1007/s10924-025-03490-y","DOIUrl":null,"url":null,"abstract":"<div><p>Bionanocomposites composed of bio-based epoxy resins and cellulose nanofibers are attracting extensive attention as sustainable materials contributing to carbon neutrality and reduced dependence on oil resources. In this study, as a water-soluble epoxy resin system, a mixture of bio-based epoxy resin [polyglycerol polyglycidyl ether (PGPE)] and petroleum-based flexible epoxy resin [polyethylene glycol diglycidyl ether (PEGDGE)] at an epoxy ratio of 2:1 was used. As a bio-based and water-soluble epoxy hardener, 3-[(2-aminoethyl)thio]propyl-etherified sucrose (NSCR) with an amine functionality of ca. 7, which was synthesized by the thiol-ene reaction of cysteamine hydrochloride and allyl-etherified sucrose, was used. A bio-based epoxy network (BEN) was prepared by drying and curing an aqueous solution of PGPE, PEGDGE, and NSCR with an epoxy/NH<sub>2</sub> ratio of 1/1. Bionanocomposites of BEN and carboxymethyl cellulose nanofibers (CMCNFs) were successfully prepared by directly mixing PGPE, PEGDGE, NSCR, and CMCNF in water without any solvent-exchange of the cellulosic nanofibers, which is necessary in conventional methods. The BEN/CMCNF bionanocomposites had excellent fiber dispersibility, and the tensile strength and modulus increased with increasing CMCNF content owing to the excellent reinforcement effect of the CMCNFs.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 5","pages":"2125 - 2137"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10924-025-03490-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Preparation and Properties of Bionanocomposites Based on Aminated Sucrose-Cured Epoxy Resins and Carboxymethyl Cellulose Nanofibers\",\"authors\":\"Jun Watanabe, Kaito Sugane, Mitsuhiro Shibata\",\"doi\":\"10.1007/s10924-025-03490-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bionanocomposites composed of bio-based epoxy resins and cellulose nanofibers are attracting extensive attention as sustainable materials contributing to carbon neutrality and reduced dependence on oil resources. In this study, as a water-soluble epoxy resin system, a mixture of bio-based epoxy resin [polyglycerol polyglycidyl ether (PGPE)] and petroleum-based flexible epoxy resin [polyethylene glycol diglycidyl ether (PEGDGE)] at an epoxy ratio of 2:1 was used. As a bio-based and water-soluble epoxy hardener, 3-[(2-aminoethyl)thio]propyl-etherified sucrose (NSCR) with an amine functionality of ca. 7, which was synthesized by the thiol-ene reaction of cysteamine hydrochloride and allyl-etherified sucrose, was used. A bio-based epoxy network (BEN) was prepared by drying and curing an aqueous solution of PGPE, PEGDGE, and NSCR with an epoxy/NH<sub>2</sub> ratio of 1/1. Bionanocomposites of BEN and carboxymethyl cellulose nanofibers (CMCNFs) were successfully prepared by directly mixing PGPE, PEGDGE, NSCR, and CMCNF in water without any solvent-exchange of the cellulosic nanofibers, which is necessary in conventional methods. The BEN/CMCNF bionanocomposites had excellent fiber dispersibility, and the tensile strength and modulus increased with increasing CMCNF content owing to the excellent reinforcement effect of the CMCNFs.</p></div>\",\"PeriodicalId\":659,\"journal\":{\"name\":\"Journal of Polymers and the Environment\",\"volume\":\"33 5\",\"pages\":\"2125 - 2137\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10924-025-03490-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymers and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10924-025-03490-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-025-03490-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Preparation and Properties of Bionanocomposites Based on Aminated Sucrose-Cured Epoxy Resins and Carboxymethyl Cellulose Nanofibers
Bionanocomposites composed of bio-based epoxy resins and cellulose nanofibers are attracting extensive attention as sustainable materials contributing to carbon neutrality and reduced dependence on oil resources. In this study, as a water-soluble epoxy resin system, a mixture of bio-based epoxy resin [polyglycerol polyglycidyl ether (PGPE)] and petroleum-based flexible epoxy resin [polyethylene glycol diglycidyl ether (PEGDGE)] at an epoxy ratio of 2:1 was used. As a bio-based and water-soluble epoxy hardener, 3-[(2-aminoethyl)thio]propyl-etherified sucrose (NSCR) with an amine functionality of ca. 7, which was synthesized by the thiol-ene reaction of cysteamine hydrochloride and allyl-etherified sucrose, was used. A bio-based epoxy network (BEN) was prepared by drying and curing an aqueous solution of PGPE, PEGDGE, and NSCR with an epoxy/NH2 ratio of 1/1. Bionanocomposites of BEN and carboxymethyl cellulose nanofibers (CMCNFs) were successfully prepared by directly mixing PGPE, PEGDGE, NSCR, and CMCNF in water without any solvent-exchange of the cellulosic nanofibers, which is necessary in conventional methods. The BEN/CMCNF bionanocomposites had excellent fiber dispersibility, and the tensile strength and modulus increased with increasing CMCNF content owing to the excellent reinforcement effect of the CMCNFs.
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.