{"title":"聚(2-甲基丙烯酰氧乙基三甲基氯化铵)超支化接枝设计的羧甲基瓜尔胶对高岭土-赤铁矿混合物的选择性絮凝增强作用","authors":"Sonai Dutta, Sayan Basak, Rahul Chatterjee, Morali Biswas, Sanghamitra Sanyal, Abhijit Bandyopadhyay","doi":"10.1007/s10924-025-03525-4","DOIUrl":null,"url":null,"abstract":"<div><p>The depletion of high-grade ore reserves necessitates innovative approaches in mineral processing, particularly for recovering valuable minerals from fine tailings. This study examines the use of bio-based hyperbranched polymers synthesized from carboxymethyl guar gum for selective flocculation of minerals, specifically focusing on kaolinite and iron ore mixtures in wastewater. Traditional coagulants present environmental drawbacks, prompting the exploration of biodegradable alternatives. Hyperbranched polymers possess a unique architecture that may enhance their interaction with suspended particles, potentially improving flocculation efficiency. This research investigates the grafting of carboxymethyl guar gum with Poly (2-methacryloyloxyethyl trimethylammonium chloride), which provides a high charge density and a stable cationic character across a range of pH levels. A kaolinite-iron ore model system was employed to evaluate the selectivity and efficiency of the synthesized flocculants under controlled conditions. Results indicate that hyperbranched carboxymethyl guar gum/Poly(2-methacryloyloxyethyl trimethylammonium chloride) exhibits improved flocculation performance and mineral selectivity compared to traditional flocculants. This study highlights the potential of HBPs as effective and environmentally sustainable alternatives for mineral recovery and wastewater treatment applications.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 5","pages":"2229 - 2248"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carboxymethyl Guar Gum Designed with Hyperbranched Grafts of Poly(2-Methacryloyloxyethyl Trimethylammonium Chloride) for Enhanced Selective Flocculation of Kaolin-Hematite Mixture\",\"authors\":\"Sonai Dutta, Sayan Basak, Rahul Chatterjee, Morali Biswas, Sanghamitra Sanyal, Abhijit Bandyopadhyay\",\"doi\":\"10.1007/s10924-025-03525-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The depletion of high-grade ore reserves necessitates innovative approaches in mineral processing, particularly for recovering valuable minerals from fine tailings. This study examines the use of bio-based hyperbranched polymers synthesized from carboxymethyl guar gum for selective flocculation of minerals, specifically focusing on kaolinite and iron ore mixtures in wastewater. Traditional coagulants present environmental drawbacks, prompting the exploration of biodegradable alternatives. Hyperbranched polymers possess a unique architecture that may enhance their interaction with suspended particles, potentially improving flocculation efficiency. This research investigates the grafting of carboxymethyl guar gum with Poly (2-methacryloyloxyethyl trimethylammonium chloride), which provides a high charge density and a stable cationic character across a range of pH levels. A kaolinite-iron ore model system was employed to evaluate the selectivity and efficiency of the synthesized flocculants under controlled conditions. Results indicate that hyperbranched carboxymethyl guar gum/Poly(2-methacryloyloxyethyl trimethylammonium chloride) exhibits improved flocculation performance and mineral selectivity compared to traditional flocculants. This study highlights the potential of HBPs as effective and environmentally sustainable alternatives for mineral recovery and wastewater treatment applications.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><img></picture></div></div></figure></div></div>\",\"PeriodicalId\":659,\"journal\":{\"name\":\"Journal of Polymers and the Environment\",\"volume\":\"33 5\",\"pages\":\"2229 - 2248\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymers and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10924-025-03525-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-025-03525-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Carboxymethyl Guar Gum Designed with Hyperbranched Grafts of Poly(2-Methacryloyloxyethyl Trimethylammonium Chloride) for Enhanced Selective Flocculation of Kaolin-Hematite Mixture
The depletion of high-grade ore reserves necessitates innovative approaches in mineral processing, particularly for recovering valuable minerals from fine tailings. This study examines the use of bio-based hyperbranched polymers synthesized from carboxymethyl guar gum for selective flocculation of minerals, specifically focusing on kaolinite and iron ore mixtures in wastewater. Traditional coagulants present environmental drawbacks, prompting the exploration of biodegradable alternatives. Hyperbranched polymers possess a unique architecture that may enhance their interaction with suspended particles, potentially improving flocculation efficiency. This research investigates the grafting of carboxymethyl guar gum with Poly (2-methacryloyloxyethyl trimethylammonium chloride), which provides a high charge density and a stable cationic character across a range of pH levels. A kaolinite-iron ore model system was employed to evaluate the selectivity and efficiency of the synthesized flocculants under controlled conditions. Results indicate that hyperbranched carboxymethyl guar gum/Poly(2-methacryloyloxyethyl trimethylammonium chloride) exhibits improved flocculation performance and mineral selectivity compared to traditional flocculants. This study highlights the potential of HBPs as effective and environmentally sustainable alternatives for mineral recovery and wastewater treatment applications.
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.