Olga Brovko, Irina Palamarchuk, Natalia Gorshkova, Dmitriy Chukhchin, Irina Eliseeva
{"title":"岩藻胶聚电解质性质对抗菌活性的影响","authors":"Olga Brovko, Irina Palamarchuk, Natalia Gorshkova, Dmitriy Chukhchin, Irina Eliseeva","doi":"10.1007/s10924-025-03506-7","DOIUrl":null,"url":null,"abstract":"<div><p>Over the years, brown algae have been highlighted as valuable natural sources of bioactive polysaccharides. They are known to consist of a number of bioactive polysaccharides, fucoidan being the principal polysaccharide. Fucoidans, a sulphated polysaccharide composed of a fucopyranose backbone and several monosaccharaides have been reported to possess numerous biological activities such as anticancer, antioxidant, antiviral, antithrombotic, and anti-inflammatory properties, thus may confer health benefits to humans. However, the main mechanisms bridging the structural complexity of fucoidans and their biological activity are mostly unexplored. This study aimed to compare the structural features and the antimicrobial properties of the fucoidan extracts isolated from the two brown macroalgae, <i>Fucus vesiculosus</i> and <i>Saccharina latissima</i>, sampled in the littoral zone of the Barents Sea. The physicochemical properties of fucoidans and their polyelectrolyte properties were investigated. The antibacterial activity of fucoidans was evaluated using the disc diffusion method against <i>Bacillus subtilis</i> (gram-positive bacteria), <i>Pseudomonas aeruginosa</i>, and <i>Proteus mirabilis</i> (gram-negative bacteria). It was shown that fucoidans inhibited the growth of both gram-positive and gram-negative microorganisms. At the concentration of 0.25–0.5%, the highest clear inhibition zones were observed for all the studied bacteria. The high antibacterial activity of fucoidans was due to the availability of functional groups and the particle sizes of fucoidan molecules that affect the cell membranes of the bacterial microflora. On the basis of obtaining results, fucoidans were suggested as potential natural and green bactericidal agents to be used by the pharmaceutical, medicine, and food industries.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 5","pages":"2138 - 2148"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Polyelectrolyte Properties of Fucoidans on Antimicrobial Activity\",\"authors\":\"Olga Brovko, Irina Palamarchuk, Natalia Gorshkova, Dmitriy Chukhchin, Irina Eliseeva\",\"doi\":\"10.1007/s10924-025-03506-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Over the years, brown algae have been highlighted as valuable natural sources of bioactive polysaccharides. They are known to consist of a number of bioactive polysaccharides, fucoidan being the principal polysaccharide. Fucoidans, a sulphated polysaccharide composed of a fucopyranose backbone and several monosaccharaides have been reported to possess numerous biological activities such as anticancer, antioxidant, antiviral, antithrombotic, and anti-inflammatory properties, thus may confer health benefits to humans. However, the main mechanisms bridging the structural complexity of fucoidans and their biological activity are mostly unexplored. This study aimed to compare the structural features and the antimicrobial properties of the fucoidan extracts isolated from the two brown macroalgae, <i>Fucus vesiculosus</i> and <i>Saccharina latissima</i>, sampled in the littoral zone of the Barents Sea. The physicochemical properties of fucoidans and their polyelectrolyte properties were investigated. The antibacterial activity of fucoidans was evaluated using the disc diffusion method against <i>Bacillus subtilis</i> (gram-positive bacteria), <i>Pseudomonas aeruginosa</i>, and <i>Proteus mirabilis</i> (gram-negative bacteria). It was shown that fucoidans inhibited the growth of both gram-positive and gram-negative microorganisms. At the concentration of 0.25–0.5%, the highest clear inhibition zones were observed for all the studied bacteria. The high antibacterial activity of fucoidans was due to the availability of functional groups and the particle sizes of fucoidan molecules that affect the cell membranes of the bacterial microflora. On the basis of obtaining results, fucoidans were suggested as potential natural and green bactericidal agents to be used by the pharmaceutical, medicine, and food industries.</p></div>\",\"PeriodicalId\":659,\"journal\":{\"name\":\"Journal of Polymers and the Environment\",\"volume\":\"33 5\",\"pages\":\"2138 - 2148\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymers and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10924-025-03506-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-025-03506-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Effect of Polyelectrolyte Properties of Fucoidans on Antimicrobial Activity
Over the years, brown algae have been highlighted as valuable natural sources of bioactive polysaccharides. They are known to consist of a number of bioactive polysaccharides, fucoidan being the principal polysaccharide. Fucoidans, a sulphated polysaccharide composed of a fucopyranose backbone and several monosaccharaides have been reported to possess numerous biological activities such as anticancer, antioxidant, antiviral, antithrombotic, and anti-inflammatory properties, thus may confer health benefits to humans. However, the main mechanisms bridging the structural complexity of fucoidans and their biological activity are mostly unexplored. This study aimed to compare the structural features and the antimicrobial properties of the fucoidan extracts isolated from the two brown macroalgae, Fucus vesiculosus and Saccharina latissima, sampled in the littoral zone of the Barents Sea. The physicochemical properties of fucoidans and their polyelectrolyte properties were investigated. The antibacterial activity of fucoidans was evaluated using the disc diffusion method against Bacillus subtilis (gram-positive bacteria), Pseudomonas aeruginosa, and Proteus mirabilis (gram-negative bacteria). It was shown that fucoidans inhibited the growth of both gram-positive and gram-negative microorganisms. At the concentration of 0.25–0.5%, the highest clear inhibition zones were observed for all the studied bacteria. The high antibacterial activity of fucoidans was due to the availability of functional groups and the particle sizes of fucoidan molecules that affect the cell membranes of the bacterial microflora. On the basis of obtaining results, fucoidans were suggested as potential natural and green bactericidal agents to be used by the pharmaceutical, medicine, and food industries.
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.