在燃煤发电厂使用和不使用太阳能回收烟气余热的 KCS11 的 4E 对比分析

IF 0.9 Q4 ENERGY & FUELS
Goutam Khankari, Sumit Srivastava, Rajib Khan, D. V. Rajan, Dinesh Kr. Singh
{"title":"在燃煤发电厂使用和不使用太阳能回收烟气余热的 KCS11 的 4E 对比分析","authors":"Goutam Khankari,&nbsp;Sumit Srivastava,&nbsp;Rajib Khan,&nbsp;D. V. Rajan,&nbsp;Dinesh Kr. Singh","doi":"10.1134/S0040601524700848","DOIUrl":null,"url":null,"abstract":"<p>A comparative performance analysis of a Kalina Cycle System 11 (KCS11) without and with solar energy is done based on 4E-analysis (energy, exergy, environment, and economic) for generating additional electricity from fluegas waste energy of a 660 MWe Supercritical (SupC) coal-fired power plant. The result shows that the integration of solar assisted KCS11 with main steam power plant increases the net plant energy and exergy efficiencies by about 0.04 and 0.03% points, respectively due to additional electricity generation of 647.43 kW at 40 K of superheat. Condenser and evaporator are the maximum contributor of energy and exergy losses, respectively in the proposed systems. Energetic performance of solar assisted Kalina cycle is higher than the standalone KCS11 due to decrease in turbine exhaust pressure and additional poor exergetic performance of solar heater causes less exergy efficient of solar assisted KCS11 compared to standalone KCS11. Use of solar integrated KCS11 reduces the annual <span>\\({\\text{C}}{{{\\text{O}}}_{{\\text{2}}}}\\)</span> emission by about 1089.58 t at full load which is nearly 1.25 times higher than the standalone KCS11. The Levelized Cost of Electricity (LCoE) for producing additional electricity by solar energy at 40 K of super-heat is about 0.13 $/kW h which is 8.5% lower value compared to the solar thermal power plant.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"72 3","pages":"229 - 239"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative 4E-Analysis of A KCS11 with and without Solar Energy for Fluegas Waste Heat Recovery in a Coal-Fired Power Plant\",\"authors\":\"Goutam Khankari,&nbsp;Sumit Srivastava,&nbsp;Rajib Khan,&nbsp;D. V. Rajan,&nbsp;Dinesh Kr. Singh\",\"doi\":\"10.1134/S0040601524700848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A comparative performance analysis of a Kalina Cycle System 11 (KCS11) without and with solar energy is done based on 4E-analysis (energy, exergy, environment, and economic) for generating additional electricity from fluegas waste energy of a 660 MWe Supercritical (SupC) coal-fired power plant. The result shows that the integration of solar assisted KCS11 with main steam power plant increases the net plant energy and exergy efficiencies by about 0.04 and 0.03% points, respectively due to additional electricity generation of 647.43 kW at 40 K of superheat. Condenser and evaporator are the maximum contributor of energy and exergy losses, respectively in the proposed systems. Energetic performance of solar assisted Kalina cycle is higher than the standalone KCS11 due to decrease in turbine exhaust pressure and additional poor exergetic performance of solar heater causes less exergy efficient of solar assisted KCS11 compared to standalone KCS11. Use of solar integrated KCS11 reduces the annual <span>\\\\({\\\\text{C}}{{{\\\\text{O}}}_{{\\\\text{2}}}}\\\\)</span> emission by about 1089.58 t at full load which is nearly 1.25 times higher than the standalone KCS11. The Levelized Cost of Electricity (LCoE) for producing additional electricity by solar energy at 40 K of super-heat is about 0.13 $/kW h which is 8.5% lower value compared to the solar thermal power plant.</p>\",\"PeriodicalId\":799,\"journal\":{\"name\":\"Thermal Engineering\",\"volume\":\"72 3\",\"pages\":\"229 - 239\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040601524700848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S0040601524700848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparative 4E-Analysis of A KCS11 with and without Solar Energy for Fluegas Waste Heat Recovery in a Coal-Fired Power Plant

Comparative 4E-Analysis of A KCS11 with and without Solar Energy for Fluegas Waste Heat Recovery in a Coal-Fired Power Plant

A comparative performance analysis of a Kalina Cycle System 11 (KCS11) without and with solar energy is done based on 4E-analysis (energy, exergy, environment, and economic) for generating additional electricity from fluegas waste energy of a 660 MWe Supercritical (SupC) coal-fired power plant. The result shows that the integration of solar assisted KCS11 with main steam power plant increases the net plant energy and exergy efficiencies by about 0.04 and 0.03% points, respectively due to additional electricity generation of 647.43 kW at 40 K of superheat. Condenser and evaporator are the maximum contributor of energy and exergy losses, respectively in the proposed systems. Energetic performance of solar assisted Kalina cycle is higher than the standalone KCS11 due to decrease in turbine exhaust pressure and additional poor exergetic performance of solar heater causes less exergy efficient of solar assisted KCS11 compared to standalone KCS11. Use of solar integrated KCS11 reduces the annual \({\text{C}}{{{\text{O}}}_{{\text{2}}}}\) emission by about 1089.58 t at full load which is nearly 1.25 times higher than the standalone KCS11. The Levelized Cost of Electricity (LCoE) for producing additional electricity by solar energy at 40 K of super-heat is about 0.13 $/kW h which is 8.5% lower value compared to the solar thermal power plant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
20.00%
发文量
94
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信