{"title":"山奈酚负载玉米蛋白纳米颗粒的制备:口腔癌细胞体外细胞毒性和诱导凋亡的研究","authors":"R. Roopashree, Anchal Gupta, Mahendra Singh Rathore, Kamini Sharma, Arunachalam Chinnathambi, Sulaiman Ali Alharbi, Mohankumar Ramar, Giriraj Kalaiarasi, Indumathi Thangavelu, Jagadeesh Suriyaprakash","doi":"10.1007/s10924-025-03532-5","DOIUrl":null,"url":null,"abstract":"<div><p>Oral cancer remains a significant health challenge, necessitating innovative therapeutic strategies to enhance treatment efficacy and minimize side effects. This study investigates the potential of kaempferol-loaded zein nanoparticles (KZNPs) for this purpose. Kaempferol, a flavonoid with anticancer properties, has poor water solubility, limiting its effectiveness. Zein nanoparticles (ZNPs) offer a promising delivery system for such bioactive compounds. UV-Vis spectroscopy identified Kaempferol’s absorption peaks at 347 and 253 nm, which shifted to 338 nm when encapsulated in ZNPs, indicating a change in π–π* conjugation. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) confirmed that sodium caseinate (SC) stabilizes ZNPs, resulting in spherical particles with optimal size and stability. Fourier transform infrared (FTIR) spectroscopy suggested enhanced hydrogen bonding between Kaempferol and zein. Differential scanning calorimetry (DSC) revealed the absence of Kaempferol’s crystalline peaks in KZNPs. The encapsulation efficiency (EE) was 98.39%, and drug release studies showed a controlled release of 79% kaempferol over 8 h. In vitro assays demonstrated that KZNPs significantly increased Kaempferol’s cytotoxicity against PCI-13 oral cancer cells without affecting normal NIH3T3 cancer cells. Overall, these results demonstrate that our KZNPs enhanced biocompatibility and anticancer properties for oral cancer cells.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 5","pages":"2371 - 2384"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of Kaempferol Loaded Zein Nanoparticles: Investigation of in Vitro Cytotoxicity and Apoptosis Induction in Oral Cancer Cells\",\"authors\":\"R. Roopashree, Anchal Gupta, Mahendra Singh Rathore, Kamini Sharma, Arunachalam Chinnathambi, Sulaiman Ali Alharbi, Mohankumar Ramar, Giriraj Kalaiarasi, Indumathi Thangavelu, Jagadeesh Suriyaprakash\",\"doi\":\"10.1007/s10924-025-03532-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Oral cancer remains a significant health challenge, necessitating innovative therapeutic strategies to enhance treatment efficacy and minimize side effects. This study investigates the potential of kaempferol-loaded zein nanoparticles (KZNPs) for this purpose. Kaempferol, a flavonoid with anticancer properties, has poor water solubility, limiting its effectiveness. Zein nanoparticles (ZNPs) offer a promising delivery system for such bioactive compounds. UV-Vis spectroscopy identified Kaempferol’s absorption peaks at 347 and 253 nm, which shifted to 338 nm when encapsulated in ZNPs, indicating a change in π–π* conjugation. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) confirmed that sodium caseinate (SC) stabilizes ZNPs, resulting in spherical particles with optimal size and stability. Fourier transform infrared (FTIR) spectroscopy suggested enhanced hydrogen bonding between Kaempferol and zein. Differential scanning calorimetry (DSC) revealed the absence of Kaempferol’s crystalline peaks in KZNPs. The encapsulation efficiency (EE) was 98.39%, and drug release studies showed a controlled release of 79% kaempferol over 8 h. In vitro assays demonstrated that KZNPs significantly increased Kaempferol’s cytotoxicity against PCI-13 oral cancer cells without affecting normal NIH3T3 cancer cells. Overall, these results demonstrate that our KZNPs enhanced biocompatibility and anticancer properties for oral cancer cells.</p></div>\",\"PeriodicalId\":659,\"journal\":{\"name\":\"Journal of Polymers and the Environment\",\"volume\":\"33 5\",\"pages\":\"2371 - 2384\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymers and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10924-025-03532-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-025-03532-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Fabrication of Kaempferol Loaded Zein Nanoparticles: Investigation of in Vitro Cytotoxicity and Apoptosis Induction in Oral Cancer Cells
Oral cancer remains a significant health challenge, necessitating innovative therapeutic strategies to enhance treatment efficacy and minimize side effects. This study investigates the potential of kaempferol-loaded zein nanoparticles (KZNPs) for this purpose. Kaempferol, a flavonoid with anticancer properties, has poor water solubility, limiting its effectiveness. Zein nanoparticles (ZNPs) offer a promising delivery system for such bioactive compounds. UV-Vis spectroscopy identified Kaempferol’s absorption peaks at 347 and 253 nm, which shifted to 338 nm when encapsulated in ZNPs, indicating a change in π–π* conjugation. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) confirmed that sodium caseinate (SC) stabilizes ZNPs, resulting in spherical particles with optimal size and stability. Fourier transform infrared (FTIR) spectroscopy suggested enhanced hydrogen bonding between Kaempferol and zein. Differential scanning calorimetry (DSC) revealed the absence of Kaempferol’s crystalline peaks in KZNPs. The encapsulation efficiency (EE) was 98.39%, and drug release studies showed a controlled release of 79% kaempferol over 8 h. In vitro assays demonstrated that KZNPs significantly increased Kaempferol’s cytotoxicity against PCI-13 oral cancer cells without affecting normal NIH3T3 cancer cells. Overall, these results demonstrate that our KZNPs enhanced biocompatibility and anticancer properties for oral cancer cells.
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.