对客观旋转速率的自然要求——对保持结构的旋转速率

IF 2.3 3区 工程技术 Q2 MECHANICS
Patrizio Neff, Sebastian Holthausen, Sergey N. Korobeynikov, Ionel-Dumitrel Ghiba, Robert J. Martin
{"title":"对客观旋转速率的自然要求——对保持结构的旋转速率","authors":"Patrizio Neff,&nbsp;Sebastian Holthausen,&nbsp;Sergey N. Korobeynikov,&nbsp;Ionel-Dumitrel Ghiba,&nbsp;Robert J. Martin","doi":"10.1007/s00707-025-04249-1","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate objective corotational rates satisfying an additional, physically plausible assumption. More precisely, we require for </p><div><div><span>$$\\begin{aligned} \\frac{\\textrm{D}^{\\circ }}{\\textrm{D}t}[B] = \\mathbb {A}^{\\circ }(B).D \\end{aligned}$$</span></div></div><p>that the characteristic stiffness tensor <span>\\(\\mathbb {A}^{\\circ }(B)\\)</span> is positive-definite. Here, <span>\\(B = F \\, F^T\\)</span> is the left Cauchy–Green tensor, <span>\\(\\frac{\\textrm{D}^{\\circ }}{\\textrm{D}t}\\)</span> is a specific objective corotational rate, <span>\\(D = {{\\,\\textrm{sym}\\,}}\\, D_\\xi v\\)</span> is the Eulerian stretching and <span>\\(\\mathbb {A}^{\\circ }(B)\\)</span> is the corresponding induced characteristic fourth-order stiffness tensor. Well-known corotational rates like the Zaremba–Jaumann rate, the Green–Naghdi rate and the logarithmic rate belong to this family of “positive” corotational rates. For general objective corotational rates <span>\\(\\frac{\\textrm{D}^{\\circ }}{\\textrm{D}t}\\)</span>, we determine several conditions characterizing positivity. Among them is an explicit condition on the material spin-functions of Xiao, Bruhns and Meyers [84]. We also give a geometrical motivation for invertibility and positivity of <span>\\( \\mathbb {A}^{\\circ }(B)\\)</span> and highlight the structure-preserving properties of corotational rates that distinguish them from more general objective stress rates. Applications of this novel concept are indicated.\n</p></div>","PeriodicalId":456,"journal":{"name":"Acta Mechanica","volume":"236 4","pages":"2657 - 2689"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00707-025-04249-1.pdf","citationCount":"0","resultStr":"{\"title\":\"A natural requirement for objective corotational rates—on structure-preserving corotational rates\",\"authors\":\"Patrizio Neff,&nbsp;Sebastian Holthausen,&nbsp;Sergey N. Korobeynikov,&nbsp;Ionel-Dumitrel Ghiba,&nbsp;Robert J. Martin\",\"doi\":\"10.1007/s00707-025-04249-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate objective corotational rates satisfying an additional, physically plausible assumption. More precisely, we require for </p><div><div><span>$$\\\\begin{aligned} \\\\frac{\\\\textrm{D}^{\\\\circ }}{\\\\textrm{D}t}[B] = \\\\mathbb {A}^{\\\\circ }(B).D \\\\end{aligned}$$</span></div></div><p>that the characteristic stiffness tensor <span>\\\\(\\\\mathbb {A}^{\\\\circ }(B)\\\\)</span> is positive-definite. Here, <span>\\\\(B = F \\\\, F^T\\\\)</span> is the left Cauchy–Green tensor, <span>\\\\(\\\\frac{\\\\textrm{D}^{\\\\circ }}{\\\\textrm{D}t}\\\\)</span> is a specific objective corotational rate, <span>\\\\(D = {{\\\\,\\\\textrm{sym}\\\\,}}\\\\, D_\\\\xi v\\\\)</span> is the Eulerian stretching and <span>\\\\(\\\\mathbb {A}^{\\\\circ }(B)\\\\)</span> is the corresponding induced characteristic fourth-order stiffness tensor. Well-known corotational rates like the Zaremba–Jaumann rate, the Green–Naghdi rate and the logarithmic rate belong to this family of “positive” corotational rates. For general objective corotational rates <span>\\\\(\\\\frac{\\\\textrm{D}^{\\\\circ }}{\\\\textrm{D}t}\\\\)</span>, we determine several conditions characterizing positivity. Among them is an explicit condition on the material spin-functions of Xiao, Bruhns and Meyers [84]. We also give a geometrical motivation for invertibility and positivity of <span>\\\\( \\\\mathbb {A}^{\\\\circ }(B)\\\\)</span> and highlight the structure-preserving properties of corotational rates that distinguish them from more general objective stress rates. Applications of this novel concept are indicated.\\n</p></div>\",\"PeriodicalId\":456,\"journal\":{\"name\":\"Acta Mechanica\",\"volume\":\"236 4\",\"pages\":\"2657 - 2689\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00707-025-04249-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00707-025-04249-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00707-025-04249-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究满足一个额外的、物理上合理的假设的客观旋转率。更准确地说,我们要求$$\begin{aligned} \frac{\textrm{D}^{\circ }}{\textrm{D}t}[B] = \mathbb {A}^{\circ }(B).D \end{aligned}$$的特征刚度张量\(\mathbb {A}^{\circ }(B)\)是正定的。其中\(B = F \, F^T\)为左Cauchy-Green张量,\(\frac{\textrm{D}^{\circ }}{\textrm{D}t}\)为特定的客观旋转率,\(D = {{\,\textrm{sym}\,}}\, D_\xi v\)为欧拉拉伸量,\(\mathbb {A}^{\circ }(B)\)为相应的诱导特征四阶刚度张量。众所周知的涡旋速率,如Zaremba-Jaumann速率、Green-Naghdi速率和对数速率都属于“正”涡旋速率家族。对于一般客观旋转率\(\frac{\textrm{D}^{\circ }}{\textrm{D}t}\),我们确定了表征正性的几个条件。其中有一个关于Xiao, Bruhns和Meyers[84]的材料自旋函数的明确条件。我们还给出了\( \mathbb {A}^{\circ }(B)\)的可逆性和正性的几何动机,并强调了将它们与更一般的客观应力率区分开来的旋转速率的结构保持特性。指出了这一新概念的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A natural requirement for objective corotational rates—on structure-preserving corotational rates

We investigate objective corotational rates satisfying an additional, physically plausible assumption. More precisely, we require for

$$\begin{aligned} \frac{\textrm{D}^{\circ }}{\textrm{D}t}[B] = \mathbb {A}^{\circ }(B).D \end{aligned}$$

that the characteristic stiffness tensor \(\mathbb {A}^{\circ }(B)\) is positive-definite. Here, \(B = F \, F^T\) is the left Cauchy–Green tensor, \(\frac{\textrm{D}^{\circ }}{\textrm{D}t}\) is a specific objective corotational rate, \(D = {{\,\textrm{sym}\,}}\, D_\xi v\) is the Eulerian stretching and \(\mathbb {A}^{\circ }(B)\) is the corresponding induced characteristic fourth-order stiffness tensor. Well-known corotational rates like the Zaremba–Jaumann rate, the Green–Naghdi rate and the logarithmic rate belong to this family of “positive” corotational rates. For general objective corotational rates \(\frac{\textrm{D}^{\circ }}{\textrm{D}t}\), we determine several conditions characterizing positivity. Among them is an explicit condition on the material spin-functions of Xiao, Bruhns and Meyers [84]. We also give a geometrical motivation for invertibility and positivity of \( \mathbb {A}^{\circ }(B)\) and highlight the structure-preserving properties of corotational rates that distinguish them from more general objective stress rates. Applications of this novel concept are indicated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica
Acta Mechanica 物理-力学
CiteScore
4.30
自引率
14.80%
发文量
292
审稿时长
6.9 months
期刊介绍: Since 1965, the international journal Acta Mechanica has been among the leading journals in the field of theoretical and applied mechanics. In addition to the classical fields such as elasticity, plasticity, vibrations, rigid body dynamics, hydrodynamics, and gasdynamics, it also gives special attention to recently developed areas such as non-Newtonian fluid dynamics, micro/nano mechanics, smart materials and structures, and issues at the interface of mechanics and materials. The journal further publishes papers in such related fields as rheology, thermodynamics, and electromagnetic interactions with fluids and solids. In addition, articles in applied mathematics dealing with significant mechanics problems are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信