物理空间信息对无线链路质量估计影响的实验评估

IF 0.3 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Kahoko Takahashi;Hisashi Nagata;Riichi Kudo;Takahiro Yamazaki;Takayuki Yamada;Takafumi Fujita
{"title":"物理空间信息对无线链路质量估计影响的实验评估","authors":"Kahoko Takahashi;Hisashi Nagata;Riichi Kudo;Takahiro Yamazaki;Takayuki Yamada;Takafumi Fujita","doi":"10.23919/comex.2025XBL0012","DOIUrl":null,"url":null,"abstract":"Predicting wireless link quality (LQ) is a promising approach to enhancing Quality of Experience (QoE). This paper examines the impact of physical space on LQ; it uses machine learning to predict RSSI and throughput from physical space information. Experiments show that the position/orientation of user equipment (UE) are crucial, with orientation affecting RSSI, and velocity significantly impacting throughput. It is revealed that these LQ parameters have different spatial factor dependencies. An experiment is conducted in a static indoor environment with clear line of sight to simplify the problem. We focus on deriving LQ from current physical space information rather than forecasting future quality.","PeriodicalId":54101,"journal":{"name":"IEICE Communications Express","volume":"14 4","pages":"163-166"},"PeriodicalIF":0.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10904088","citationCount":"0","resultStr":"{\"title\":\"Experimental Evaluation of the Impact of Physical Space Information on Wireless Link Quality Estimation\",\"authors\":\"Kahoko Takahashi;Hisashi Nagata;Riichi Kudo;Takahiro Yamazaki;Takayuki Yamada;Takafumi Fujita\",\"doi\":\"10.23919/comex.2025XBL0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting wireless link quality (LQ) is a promising approach to enhancing Quality of Experience (QoE). This paper examines the impact of physical space on LQ; it uses machine learning to predict RSSI and throughput from physical space information. Experiments show that the position/orientation of user equipment (UE) are crucial, with orientation affecting RSSI, and velocity significantly impacting throughput. It is revealed that these LQ parameters have different spatial factor dependencies. An experiment is conducted in a static indoor environment with clear line of sight to simplify the problem. We focus on deriving LQ from current physical space information rather than forecasting future quality.\",\"PeriodicalId\":54101,\"journal\":{\"name\":\"IEICE Communications Express\",\"volume\":\"14 4\",\"pages\":\"163-166\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10904088\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Communications Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10904088/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Communications Express","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10904088/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

预测无线链路质量(LQ)是提高体验质量(QoE)的一种很有前途的方法。本文考察了物理空间对LQ的影响;它使用机器学习从物理空间信息中预测RSSI和吞吐量。实验表明,用户设备(UE)的位置/方向至关重要,方向影响RSSI,速度显著影响吞吐量。结果表明,这些LQ参数具有不同的空间因子依赖性。为了简化问题,我们在一个视线清晰的静态室内环境中进行了实验。我们专注于从当前的物理空间信息中获得LQ,而不是预测未来的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Evaluation of the Impact of Physical Space Information on Wireless Link Quality Estimation
Predicting wireless link quality (LQ) is a promising approach to enhancing Quality of Experience (QoE). This paper examines the impact of physical space on LQ; it uses machine learning to predict RSSI and throughput from physical space information. Experiments show that the position/orientation of user equipment (UE) are crucial, with orientation affecting RSSI, and velocity significantly impacting throughput. It is revealed that these LQ parameters have different spatial factor dependencies. An experiment is conducted in a static indoor environment with clear line of sight to simplify the problem. We focus on deriving LQ from current physical space information rather than forecasting future quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEICE Communications Express
IEICE Communications Express ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
114
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信