带噪声输入的偏置补偿归一化迭代维纳滤波算法

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Hai Yuan;Lu Lu;Guangya Zhu;Badong Chen
{"title":"带噪声输入的偏置补偿归一化迭代维纳滤波算法","authors":"Hai Yuan;Lu Lu;Guangya Zhu;Badong Chen","doi":"10.1109/LSP.2025.3550772","DOIUrl":null,"url":null,"abstract":"The iterative Wiener filter (IWF) algorithm can achieve a fast convergence rate. However, its performance may degrade when it encounters noisy input scenarios. To tackle this problem, a novel IWF algorithm incorporating bias-compensation (BC-IWF) is proposed, which can enhance the performance of the algorithm by estimating the input noise variance. The BC-IWF algorithm optimizes the step size for each iteration and updates along the direction of the gradient. To further reduce the steady-state error, a normalized IWF by making use of the bias-compensation scheme (BC-NIWF) algorithm is proposed. Moreover, the steady-state performance of the BC-NIWF algorithm is analyzed. Simulation results demonstrate the validity of the theoretical analysis and the BC-NIWF algorithm achieves improved misadjustment compared with the state-of-the-art algorithms.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"1445-1449"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bias-Compensated Normalized Iterative Wiener Filter Algorithm With Noisy Input\",\"authors\":\"Hai Yuan;Lu Lu;Guangya Zhu;Badong Chen\",\"doi\":\"10.1109/LSP.2025.3550772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The iterative Wiener filter (IWF) algorithm can achieve a fast convergence rate. However, its performance may degrade when it encounters noisy input scenarios. To tackle this problem, a novel IWF algorithm incorporating bias-compensation (BC-IWF) is proposed, which can enhance the performance of the algorithm by estimating the input noise variance. The BC-IWF algorithm optimizes the step size for each iteration and updates along the direction of the gradient. To further reduce the steady-state error, a normalized IWF by making use of the bias-compensation scheme (BC-NIWF) algorithm is proposed. Moreover, the steady-state performance of the BC-NIWF algorithm is analyzed. Simulation results demonstrate the validity of the theoretical analysis and the BC-NIWF algorithm achieves improved misadjustment compared with the state-of-the-art algorithms.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"1445-1449\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10923637/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10923637/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

迭代维纳滤波(IWF)算法具有较快的收敛速度。但是,当遇到噪声输入场景时,其性能可能会下降。为了解决这一问题,提出了一种结合偏置补偿的IWF算法(BC-IWF),该算法通过估计输入噪声方差来提高算法的性能。BC-IWF算法对每次迭代的步长进行优化,并沿着梯度方向进行更新。为了进一步减小稳态误差,提出了一种利用偏置补偿方案(BC-NIWF)的归一化IWF算法。此外,还分析了BC-NIWF算法的稳态性能。仿真结果验证了理论分析的有效性,与现有算法相比,BC-NIWF算法实现了更好的失调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bias-Compensated Normalized Iterative Wiener Filter Algorithm With Noisy Input
The iterative Wiener filter (IWF) algorithm can achieve a fast convergence rate. However, its performance may degrade when it encounters noisy input scenarios. To tackle this problem, a novel IWF algorithm incorporating bias-compensation (BC-IWF) is proposed, which can enhance the performance of the algorithm by estimating the input noise variance. The BC-IWF algorithm optimizes the step size for each iteration and updates along the direction of the gradient. To further reduce the steady-state error, a normalized IWF by making use of the bias-compensation scheme (BC-NIWF) algorithm is proposed. Moreover, the steady-state performance of the BC-NIWF algorithm is analyzed. Simulation results demonstrate the validity of the theoretical analysis and the BC-NIWF algorithm achieves improved misadjustment compared with the state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信