不确定动态环境下安全运动控制的行为模型误差处理

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Minjun Sung;Hunmin Kim;Naira Hovakimyan
{"title":"不确定动态环境下安全运动控制的行为模型误差处理","authors":"Minjun Sung;Hunmin Kim;Naira Hovakimyan","doi":"10.1109/LRA.2025.3555877","DOIUrl":null,"url":null,"abstract":"Uncertainties in the environment and behavior model inaccuracies compromise the state estimation of a dynamic obstacle and its trajectory predictions, introducing biases in estimation and shifts in predictive distributions. In this letter, we propose a novel algorithm <monospace>SIED-MPC</monospace>, which synergistically integrates Simultaneous State and Input Estimation (SSIE) and Distributionally Robust Model Predictive Control (DR-MPC) using model confidence evaluation. The SSIE process produces unbiased state estimates and optimal <italic>input gap</i> estimates to assess the confidence of the behavior model, defining the ambiguity radius for DR-MPC to handle predictive distribution shifts. The proposed method produces safe inputs with an adequate level of conservatism. Our algorithm demonstrated a reduced collision rate and computation time in autonomous driving simulations through improved state estimation.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 5","pages":"4962-4969"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addressing Behavior Model Inaccuracies for Safe Motion Control in Uncertain Dynamic Environments\",\"authors\":\"Minjun Sung;Hunmin Kim;Naira Hovakimyan\",\"doi\":\"10.1109/LRA.2025.3555877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uncertainties in the environment and behavior model inaccuracies compromise the state estimation of a dynamic obstacle and its trajectory predictions, introducing biases in estimation and shifts in predictive distributions. In this letter, we propose a novel algorithm <monospace>SIED-MPC</monospace>, which synergistically integrates Simultaneous State and Input Estimation (SSIE) and Distributionally Robust Model Predictive Control (DR-MPC) using model confidence evaluation. The SSIE process produces unbiased state estimates and optimal <italic>input gap</i> estimates to assess the confidence of the behavior model, defining the ambiguity radius for DR-MPC to handle predictive distribution shifts. The proposed method produces safe inputs with an adequate level of conservatism. Our algorithm demonstrated a reduced collision rate and computation time in autonomous driving simulations through improved state estimation.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 5\",\"pages\":\"4962-4969\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10945414/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10945414/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

环境中的不确定性和行为模型的不准确性会影响动态障碍物的状态估计及其轨迹预测,从而导致估计偏差和预测分布的偏移。在本文中,我们提出了一种新的siped - mpc算法,该算法通过模型置信度评估将同步状态和输入估计(SSIE)和分布鲁棒模型预测控制(DR-MPC)协同集成。SSIE过程产生无偏状态估计和最优输入缺口估计,以评估行为模型的置信度,定义DR-MPC处理预测分布变化的模糊半径。所提出的方法产生具有足够保守性的安全输入。我们的算法通过改进状态估计,在自动驾驶仿真中降低了碰撞率和计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Addressing Behavior Model Inaccuracies for Safe Motion Control in Uncertain Dynamic Environments
Uncertainties in the environment and behavior model inaccuracies compromise the state estimation of a dynamic obstacle and its trajectory predictions, introducing biases in estimation and shifts in predictive distributions. In this letter, we propose a novel algorithm SIED-MPC, which synergistically integrates Simultaneous State and Input Estimation (SSIE) and Distributionally Robust Model Predictive Control (DR-MPC) using model confidence evaluation. The SSIE process produces unbiased state estimates and optimal input gap estimates to assess the confidence of the behavior model, defining the ambiguity radius for DR-MPC to handle predictive distribution shifts. The proposed method produces safe inputs with an adequate level of conservatism. Our algorithm demonstrated a reduced collision rate and computation time in autonomous driving simulations through improved state estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信