{"title":"直流微电网惯性仿真策略综述:稳定性分析和交流微电网类比","authors":"Mahdis Haddadi;Saman A. Gorji;Samson S. Yu","doi":"10.1109/OJIES.2025.3550625","DOIUrl":null,"url":null,"abstract":"Inertia is a critical factor in maintaining the frequency stability of power systems. However, the growing integration of power electronics-based renewable energy sources (RESs) has significantly reduced system inertia. AC and dc microgrids have emerged as key solutions for integrating RESs. Unlike traditional synchronous generators, power electronic converters interfacing RESs lack inherent inertia and damping, posing challenges to the control and stability of these microgrids. To address these challenges, virtual inertia control strategies, which emulate the behavior of synchronous generators, have been widely adopted to enhance the stability of ac microgrids. Drawing on the analogies between ac and dc systems, similar virtual inertia concepts have been extended to dc microgrids, demonstrating their potential to improve system stability. This article provides a comprehensive review of inertia enhancement strategies for dc microgrids, examining their key features, benefits, and limitations. The analogy between synchronous generators/dc machines and energy storage systems is explored, with a particular focus on the implementation of virtual inertia and damping control in energy storage converters as a promising solution to mitigate power fluctuations. In addition, this article investigates the grid-forming and grid-following converter analogies in ac and dc microgrids. Various stability analysis methods applied to inertia enhancement strategies are also reviewed, offering readers a comprehensive understanding of the current state of research. By addressing the conceptual and technical analogies between ac and dc systems, this review aims to provide valuable insights for developing advanced control strategies for next-generation microgrids.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"491-521"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10923700","citationCount":"0","resultStr":"{\"title\":\"An Overview of Inertia Emulation Strategies for DC Microgrids: Stability Analysis and AC Microgrid Analogies\",\"authors\":\"Mahdis Haddadi;Saman A. Gorji;Samson S. Yu\",\"doi\":\"10.1109/OJIES.2025.3550625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inertia is a critical factor in maintaining the frequency stability of power systems. However, the growing integration of power electronics-based renewable energy sources (RESs) has significantly reduced system inertia. AC and dc microgrids have emerged as key solutions for integrating RESs. Unlike traditional synchronous generators, power electronic converters interfacing RESs lack inherent inertia and damping, posing challenges to the control and stability of these microgrids. To address these challenges, virtual inertia control strategies, which emulate the behavior of synchronous generators, have been widely adopted to enhance the stability of ac microgrids. Drawing on the analogies between ac and dc systems, similar virtual inertia concepts have been extended to dc microgrids, demonstrating their potential to improve system stability. This article provides a comprehensive review of inertia enhancement strategies for dc microgrids, examining their key features, benefits, and limitations. The analogy between synchronous generators/dc machines and energy storage systems is explored, with a particular focus on the implementation of virtual inertia and damping control in energy storage converters as a promising solution to mitigate power fluctuations. In addition, this article investigates the grid-forming and grid-following converter analogies in ac and dc microgrids. Various stability analysis methods applied to inertia enhancement strategies are also reviewed, offering readers a comprehensive understanding of the current state of research. By addressing the conceptual and technical analogies between ac and dc systems, this review aims to provide valuable insights for developing advanced control strategies for next-generation microgrids.\",\"PeriodicalId\":52675,\"journal\":{\"name\":\"IEEE Open Journal of the Industrial Electronics Society\",\"volume\":\"6 \",\"pages\":\"491-521\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10923700\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10923700/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10923700/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An Overview of Inertia Emulation Strategies for DC Microgrids: Stability Analysis and AC Microgrid Analogies
Inertia is a critical factor in maintaining the frequency stability of power systems. However, the growing integration of power electronics-based renewable energy sources (RESs) has significantly reduced system inertia. AC and dc microgrids have emerged as key solutions for integrating RESs. Unlike traditional synchronous generators, power electronic converters interfacing RESs lack inherent inertia and damping, posing challenges to the control and stability of these microgrids. To address these challenges, virtual inertia control strategies, which emulate the behavior of synchronous generators, have been widely adopted to enhance the stability of ac microgrids. Drawing on the analogies between ac and dc systems, similar virtual inertia concepts have been extended to dc microgrids, demonstrating their potential to improve system stability. This article provides a comprehensive review of inertia enhancement strategies for dc microgrids, examining their key features, benefits, and limitations. The analogy between synchronous generators/dc machines and energy storage systems is explored, with a particular focus on the implementation of virtual inertia and damping control in energy storage converters as a promising solution to mitigate power fluctuations. In addition, this article investigates the grid-forming and grid-following converter analogies in ac and dc microgrids. Various stability analysis methods applied to inertia enhancement strategies are also reviewed, offering readers a comprehensive understanding of the current state of research. By addressing the conceptual and technical analogies between ac and dc systems, this review aims to provide valuable insights for developing advanced control strategies for next-generation microgrids.
期刊介绍:
The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments.
Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.