非二部图上的分解族和谱极值问题

IF 0.7 3区 数学 Q2 MATHEMATICS
Longfei Fang , Michael Tait , Mingqing Zhai
{"title":"非二部图上的分解族和谱极值问题","authors":"Longfei Fang ,&nbsp;Michael Tait ,&nbsp;Mingqing Zhai","doi":"10.1016/j.disc.2025.114527","DOIUrl":null,"url":null,"abstract":"<div><div>Given a graph family <span><math><mi>H</mi></math></span> with <span><math><msub><mrow><mi>min</mi></mrow><mrow><mi>H</mi><mo>∈</mo><mi>H</mi></mrow></msub><mo>⁡</mo><mi>χ</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>=</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo>≥</mo><mn>3</mn></math></span>. Let <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> and <span><math><mrow><mi>spex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> be the maximum number of edges and the maximum spectral radius of the adjacency matrix over all <em>n</em>-vertex <span><math><mi>H</mi></math></span>-free graphs, respectively. Denote by <span><math><mrow><mi>EX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> (resp. <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span>) the set of extremal graphs with respect to <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> (resp. <span><math><mrow><mi>spex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span>). A fundamental problem in extremal spectral graph theory asks which graph <em>H</em> satisfies <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo><mo>⊆</mo><mrow><mi>EX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span>.</div><div>Wang et al. (2023) <span><span>[43]</span></span> proved that <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo><mo>⊆</mo><mrow><mi>EX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> for <em>n</em> sufficiently large and any finite graph <em>H</em> with <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo><mo>=</mo><mi>e</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>r</mi></mrow></msub><mo>)</mo><mo>+</mo><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>. In this paper, we use decomposition family defined by Simonovits to give a characterization of which graph families <span><math><mi>H</mi></math></span> satisfy <span><math><mi>e</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>r</mi></mrow></msub><mo>)</mo><mo>≤</mo><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo><mo>&lt;</mo><mi>e</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>r</mi></mrow></msub><mo>)</mo><mo>+</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mi>r</mi></mrow></mfrac><mo>⌋</mo></math></span>. Using this result, we show that <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo><mo>⊆</mo><mrow><mi>EX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> for <em>n</em> sufficiently large and any finite family <span><math><mi>H</mi></math></span> with <span><math><mi>e</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>r</mi></mrow></msub><mo>)</mo><mo>≤</mo><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo><mo>&lt;</mo><mi>e</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>r</mi></mrow></msub><mo>)</mo><mo>+</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mi>r</mi></mrow></mfrac><mo>⌋</mo></math></span>.</div><div>As an application, we completely determine <span><math><mrow><mi>EX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>G</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo><mo>)</mo></math></span> for <em>n</em> sufficiently large, where <span><math><mi>G</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> denotes a finite graph family which consists of <em>k</em> edge-disjoint <span><math><mo>(</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-chromatic color-critical graphs <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>. This result strengthens a theorem of Győri, who settled the case that <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mo>⋯</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. Furthermore, we determine <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>G</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo><mo>)</mo></math></span> for <em>n</em> sufficiently large.</div><div>Finally, two related problems are proposed for further research.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 10","pages":"Article 114527"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decomposition family and spectral extremal problems on non-bipartite graphs\",\"authors\":\"Longfei Fang ,&nbsp;Michael Tait ,&nbsp;Mingqing Zhai\",\"doi\":\"10.1016/j.disc.2025.114527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a graph family <span><math><mi>H</mi></math></span> with <span><math><msub><mrow><mi>min</mi></mrow><mrow><mi>H</mi><mo>∈</mo><mi>H</mi></mrow></msub><mo>⁡</mo><mi>χ</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>=</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo>≥</mo><mn>3</mn></math></span>. Let <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> and <span><math><mrow><mi>spex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> be the maximum number of edges and the maximum spectral radius of the adjacency matrix over all <em>n</em>-vertex <span><math><mi>H</mi></math></span>-free graphs, respectively. Denote by <span><math><mrow><mi>EX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> (resp. <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span>) the set of extremal graphs with respect to <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> (resp. <span><math><mrow><mi>spex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span>). A fundamental problem in extremal spectral graph theory asks which graph <em>H</em> satisfies <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo><mo>⊆</mo><mrow><mi>EX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span>.</div><div>Wang et al. (2023) <span><span>[43]</span></span> proved that <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo><mo>⊆</mo><mrow><mi>EX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> for <em>n</em> sufficiently large and any finite graph <em>H</em> with <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo><mo>=</mo><mi>e</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>r</mi></mrow></msub><mo>)</mo><mo>+</mo><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>. In this paper, we use decomposition family defined by Simonovits to give a characterization of which graph families <span><math><mi>H</mi></math></span> satisfy <span><math><mi>e</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>r</mi></mrow></msub><mo>)</mo><mo>≤</mo><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo><mo>&lt;</mo><mi>e</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>r</mi></mrow></msub><mo>)</mo><mo>+</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mi>r</mi></mrow></mfrac><mo>⌋</mo></math></span>. Using this result, we show that <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo><mo>⊆</mo><mrow><mi>EX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> for <em>n</em> sufficiently large and any finite family <span><math><mi>H</mi></math></span> with <span><math><mi>e</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>r</mi></mrow></msub><mo>)</mo><mo>≤</mo><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo><mo>&lt;</mo><mi>e</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>r</mi></mrow></msub><mo>)</mo><mo>+</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mi>r</mi></mrow></mfrac><mo>⌋</mo></math></span>.</div><div>As an application, we completely determine <span><math><mrow><mi>EX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>G</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo><mo>)</mo></math></span> for <em>n</em> sufficiently large, where <span><math><mi>G</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> denotes a finite graph family which consists of <em>k</em> edge-disjoint <span><math><mo>(</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-chromatic color-critical graphs <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>. This result strengthens a theorem of Győri, who settled the case that <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mo>⋯</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. Furthermore, we determine <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>G</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo><mo>)</mo></math></span> for <em>n</em> sufficiently large.</div><div>Finally, two related problems are proposed for further research.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 10\",\"pages\":\"Article 114527\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25001359\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001359","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个图族H,其中minH∈H (H)=r+1≥3。设ex(n,H)和spex(n,H)分别为所有n顶点无H图上邻接矩阵的最大边数和最大谱半径。用EX(n,H)表示。SPEX(n,H))关于ex(n,H)的极值图的集合。spex (n、H))。极值谱图理论中的一个基本问题是:哪个图H满足SPEX(n,H)任任EX(n,H)。Wang等人(2023)[43]证明了当n足够大且任意有限图H (EX(n,H) =e(Tn,r)+O(1))时,SPEX(n,H)≥exx (n,H)。本文利用Simonovits定义的分解族给出了图族H满足e(Tn,r)≤ex(n,H)<e(Tn,r)+⌊n2r⌋的刻画。利用这一结果,我们证明了对于n足够大且e(Tn,r)≤EX(n,H) <e(Tn,r)+⌊n2r⌋的任意有限族H, SPEX(n,H)≥exp (n,H)<;作为应用,我们完全确定了当n足够大时EX(n,G(F1,…,Fk)),其中G(F1,…,Fk)表示由k个边不相交(r+1)色临界图F1,…,Fk组成的有限图族。这一结果加强了Győri的一个定理,该定理解决了F1=⋯=Fk=Kr+1的情况。此外,当n足够大时,我们确定了SPEX(n,G(F1,…,Fk))。最后,提出了两个有待进一步研究的相关问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decomposition family and spectral extremal problems on non-bipartite graphs
Given a graph family H with minHHχ(H)=r+13. Let ex(n,H) and spex(n,H) be the maximum number of edges and the maximum spectral radius of the adjacency matrix over all n-vertex H-free graphs, respectively. Denote by EX(n,H) (resp. SPEX(n,H)) the set of extremal graphs with respect to ex(n,H) (resp. spex(n,H)). A fundamental problem in extremal spectral graph theory asks which graph H satisfies SPEX(n,H)EX(n,H).
Wang et al. (2023) [43] proved that SPEX(n,H)EX(n,H) for n sufficiently large and any finite graph H with ex(n,H)=e(Tn,r)+O(1). In this paper, we use decomposition family defined by Simonovits to give a characterization of which graph families H satisfy e(Tn,r)ex(n,H)<e(Tn,r)+n2r. Using this result, we show that SPEX(n,H)EX(n,H) for n sufficiently large and any finite family H with e(Tn,r)ex(n,H)<e(Tn,r)+n2r.
As an application, we completely determine EX(n,G(F1,,Fk)) for n sufficiently large, where G(F1,,Fk) denotes a finite graph family which consists of k edge-disjoint (r+1)-chromatic color-critical graphs F1,,Fk. This result strengthens a theorem of Győri, who settled the case that F1==Fk=Kr+1. Furthermore, we determine SPEX(n,G(F1,,Fk)) for n sufficiently large.
Finally, two related problems are proposed for further research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信