Guoxia Liu , Qimei Bao , Chunkai Zhang , Yuke Zhong , Mingcong Deng , Yixing Huang , Zu Ye , Ji Jing
{"title":"聚氯乙烯纳米塑料通过溶酶体和线粒体功能障碍损害心脏功能","authors":"Guoxia Liu , Qimei Bao , Chunkai Zhang , Yuke Zhong , Mingcong Deng , Yixing Huang , Zu Ye , Ji Jing","doi":"10.1016/j.bbrc.2025.151736","DOIUrl":null,"url":null,"abstract":"<div><h3>Micro</h3><div>and nanoplastics (MNPs) are emerging environmental pollutants that pose a significant threat to human health, with traces found in cardiac tissues. While previous studies have indicated that MNPs can cantribute to cardiac dysfunction, there is limited systematic investigation into how MNPs exposure affects various organelles. This study focuses on polyvinyl chloride nanoparticles (PVC NPs), one of the most common and persistent plastic pollutants in the environment. Our findings reveal that PVC NPs engage in organelle-specific interactions, predominantly accumulating in the lysosomes and mitochondria of cardiomyocytes. This targeted accumulation results in substantial disruptions to lysosomal autophagic flux and mitochondrial energy metabolism. These results offer new insights into the organelle-specific mechanisms behind PVC NP-induced cardiotoxicity, highlighting the distinct risks associated with this widespread environmental contaminant.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"762 ","pages":"Article 151736"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PVC nanoplastics impair cardiac function via lysosomal and mitochondrial dysfunction\",\"authors\":\"Guoxia Liu , Qimei Bao , Chunkai Zhang , Yuke Zhong , Mingcong Deng , Yixing Huang , Zu Ye , Ji Jing\",\"doi\":\"10.1016/j.bbrc.2025.151736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Micro</h3><div>and nanoplastics (MNPs) are emerging environmental pollutants that pose a significant threat to human health, with traces found in cardiac tissues. While previous studies have indicated that MNPs can cantribute to cardiac dysfunction, there is limited systematic investigation into how MNPs exposure affects various organelles. This study focuses on polyvinyl chloride nanoparticles (PVC NPs), one of the most common and persistent plastic pollutants in the environment. Our findings reveal that PVC NPs engage in organelle-specific interactions, predominantly accumulating in the lysosomes and mitochondria of cardiomyocytes. This targeted accumulation results in substantial disruptions to lysosomal autophagic flux and mitochondrial energy metabolism. These results offer new insights into the organelle-specific mechanisms behind PVC NP-induced cardiotoxicity, highlighting the distinct risks associated with this widespread environmental contaminant.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":\"762 \",\"pages\":\"Article 151736\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X25004504\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25004504","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
PVC nanoplastics impair cardiac function via lysosomal and mitochondrial dysfunction
Micro
and nanoplastics (MNPs) are emerging environmental pollutants that pose a significant threat to human health, with traces found in cardiac tissues. While previous studies have indicated that MNPs can cantribute to cardiac dysfunction, there is limited systematic investigation into how MNPs exposure affects various organelles. This study focuses on polyvinyl chloride nanoparticles (PVC NPs), one of the most common and persistent plastic pollutants in the environment. Our findings reveal that PVC NPs engage in organelle-specific interactions, predominantly accumulating in the lysosomes and mitochondria of cardiomyocytes. This targeted accumulation results in substantial disruptions to lysosomal autophagic flux and mitochondrial energy metabolism. These results offer new insights into the organelle-specific mechanisms behind PVC NP-induced cardiotoxicity, highlighting the distinct risks associated with this widespread environmental contaminant.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics