A. Revathy , R. Thangam , D. Haripriya , S. Maheswari , P. Murugapandiyan
{"title":"β-Ga2O3衬底上超尺度55nm InAlN/InGaN/GaN/AlGaN HEMT:基于tcad的高频功率性能分析","authors":"A. Revathy , R. Thangam , D. Haripriya , S. Maheswari , P. Murugapandiyan","doi":"10.1016/j.micrna.2025.208169","DOIUrl":null,"url":null,"abstract":"<div><div>We present a comprehensive TCAD simulation study of an ultra-scaled InAlN/InGaN/GaN/AlGaN High Electron Mobility Transistor (HEMT on β-Ga<sub>2</sub>O<sub>3</sub> substrate. The novel device architecture, incorporating a 55 nm gate length, addresses key challenges in wide-bandgap semiconductor integration while achieving superior performance metrics. Our simulation results demonstrate exceptional DC characteristics, including a maximum drain current density of 5.5 A/mm and ON-resistance of 9.23 Ω mm. The device exhibits remarkable electrostatic control with an I<sub>ON</sub>/I<sub>OFF</sub> ratio exceeding 10<sup>13</sup> and peak transconductance of 0.77 S/mm. Three-terminal breakdown voltage simulations confirm robust operation up to 55 V. Through optimized parasitic management and short-channel effect mitigation, the device achieves cutting-edge radio frequency performance with f<sub>T</sub>/f<sub>max</sub> of 274/285 GHz. These results establish the potential of InAlN-based HEMTs on β-Ga<sub>2</sub>O<sub>3</sub> substrates for next-generation high-frequency power applications.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"204 ","pages":"Article 208169"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-scaled 55 nm InAlN/InGaN/GaN/AlGaN HEMT on β-Ga2O3 substrate: A TCAD-Based performance analysis for high-frequency power applications\",\"authors\":\"A. Revathy , R. Thangam , D. Haripriya , S. Maheswari , P. Murugapandiyan\",\"doi\":\"10.1016/j.micrna.2025.208169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a comprehensive TCAD simulation study of an ultra-scaled InAlN/InGaN/GaN/AlGaN High Electron Mobility Transistor (HEMT on β-Ga<sub>2</sub>O<sub>3</sub> substrate. The novel device architecture, incorporating a 55 nm gate length, addresses key challenges in wide-bandgap semiconductor integration while achieving superior performance metrics. Our simulation results demonstrate exceptional DC characteristics, including a maximum drain current density of 5.5 A/mm and ON-resistance of 9.23 Ω mm. The device exhibits remarkable electrostatic control with an I<sub>ON</sub>/I<sub>OFF</sub> ratio exceeding 10<sup>13</sup> and peak transconductance of 0.77 S/mm. Three-terminal breakdown voltage simulations confirm robust operation up to 55 V. Through optimized parasitic management and short-channel effect mitigation, the device achieves cutting-edge radio frequency performance with f<sub>T</sub>/f<sub>max</sub> of 274/285 GHz. These results establish the potential of InAlN-based HEMTs on β-Ga<sub>2</sub>O<sub>3</sub> substrates for next-generation high-frequency power applications.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"204 \",\"pages\":\"Article 208169\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325000986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325000986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
本文对β-Ga2O3衬底上的超尺度InAlN/InGaN/GaN/AlGaN高电子迁移率晶体管(HEMT)进行了全面的TCAD模拟研究。采用55nm栅极长度的新型器件架构,解决了宽带隙半导体集成中的关键挑战,同时实现了卓越的性能指标。仿真结果表明,该器件具有优异的直流特性,最大漏极电流密度为5.5 a /mm,导通电阻为9.23 Ω mm,离子/ off比超过1013,峰值跨导率为0.77 S/mm,具有出色的静电控制能力。三端击穿电压模拟证实了高达55 V的稳健运行。通过优化的寄生管理和短信道效应缓解,该器件实现了尖端的射频性能,fT/fmax达到274/285 GHz。这些结果确立了β-Ga2O3衬底上基于inaln的hemt在下一代高频功率应用中的潜力。
Ultra-scaled 55 nm InAlN/InGaN/GaN/AlGaN HEMT on β-Ga2O3 substrate: A TCAD-Based performance analysis for high-frequency power applications
We present a comprehensive TCAD simulation study of an ultra-scaled InAlN/InGaN/GaN/AlGaN High Electron Mobility Transistor (HEMT on β-Ga2O3 substrate. The novel device architecture, incorporating a 55 nm gate length, addresses key challenges in wide-bandgap semiconductor integration while achieving superior performance metrics. Our simulation results demonstrate exceptional DC characteristics, including a maximum drain current density of 5.5 A/mm and ON-resistance of 9.23 Ω mm. The device exhibits remarkable electrostatic control with an ION/IOFF ratio exceeding 1013 and peak transconductance of 0.77 S/mm. Three-terminal breakdown voltage simulations confirm robust operation up to 55 V. Through optimized parasitic management and short-channel effect mitigation, the device achieves cutting-edge radio frequency performance with fT/fmax of 274/285 GHz. These results establish the potential of InAlN-based HEMTs on β-Ga2O3 substrates for next-generation high-frequency power applications.