超越机械感知:细胞在发育过程中如何感知和塑造其物理环境

IF 6 2区 生物学 Q1 CELL BIOLOGY
Matyas Bubna-Litic, Roberto Mayor
{"title":"超越机械感知:细胞在发育过程中如何感知和塑造其物理环境","authors":"Matyas Bubna-Litic,&nbsp;Roberto Mayor","doi":"10.1016/j.ceb.2025.102514","DOIUrl":null,"url":null,"abstract":"<div><div>The role of mechanics as a regulator of cell behaviour and embryo development has been widely recognised. However, much of the focus in mechanobiology during embryo development has been on how the mechanical properties of a cell affect its behaviour and fate determination. We discuss the role of mechanosignalling in development and propose that an equally important aspect of embryo mechanobiology is understanding how dynamic changes in tissue mechanics are regulated. Comparably to how chemical signals influence the fate of responding tissues during embryonic induction, we suggest that embryonic cell populations can alter the mechanical properties of adjacent tissues in a process we name ‘actuation’. Several examples of embryonic actuation and mechanical feedback are discussed.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"94 ","pages":"Article 102514"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond mechanosensing: How cells sense and shape their physical environment during development\",\"authors\":\"Matyas Bubna-Litic,&nbsp;Roberto Mayor\",\"doi\":\"10.1016/j.ceb.2025.102514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The role of mechanics as a regulator of cell behaviour and embryo development has been widely recognised. However, much of the focus in mechanobiology during embryo development has been on how the mechanical properties of a cell affect its behaviour and fate determination. We discuss the role of mechanosignalling in development and propose that an equally important aspect of embryo mechanobiology is understanding how dynamic changes in tissue mechanics are regulated. Comparably to how chemical signals influence the fate of responding tissues during embryonic induction, we suggest that embryonic cell populations can alter the mechanical properties of adjacent tissues in a process we name ‘actuation’. Several examples of embryonic actuation and mechanical feedback are discussed.</div></div>\",\"PeriodicalId\":50608,\"journal\":{\"name\":\"Current Opinion in Cell Biology\",\"volume\":\"94 \",\"pages\":\"Article 102514\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955067425000523\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067425000523","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

力学作为细胞行为和胚胎发育的调节者的作用已被广泛认识。然而,在胚胎发育过程中,机械生物学的大部分焦点都集中在细胞的机械特性如何影响其行为和命运决定上。我们讨论了机械信号在发育中的作用,并提出胚胎力学生物学的一个同样重要的方面是理解如何调节组织力学的动态变化。与化学信号如何影响胚胎诱导过程中响应组织的命运相比,我们认为胚胎细胞群可以在我们称之为“驱动”的过程中改变邻近组织的机械特性。讨论了胚胎驱动和机械反馈的几个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond mechanosensing: How cells sense and shape their physical environment during development
The role of mechanics as a regulator of cell behaviour and embryo development has been widely recognised. However, much of the focus in mechanobiology during embryo development has been on how the mechanical properties of a cell affect its behaviour and fate determination. We discuss the role of mechanosignalling in development and propose that an equally important aspect of embryo mechanobiology is understanding how dynamic changes in tissue mechanics are regulated. Comparably to how chemical signals influence the fate of responding tissues during embryonic induction, we suggest that embryonic cell populations can alter the mechanical properties of adjacent tissues in a process we name ‘actuation’. Several examples of embryonic actuation and mechanical feedback are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Cell Biology
Current Opinion in Cell Biology 生物-细胞生物学
CiteScore
14.60
自引率
1.30%
发文量
79
审稿时长
93 days
期刊介绍: Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings. COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信