{"title":"高屈服强度TRIP钛合金:低成本和短工艺制造方法","authors":"Junyang Chen, Zhilei Xiang, Cheng Qian, Zongyi Zhou, Bing Wang, Jihao Li, Ziyong Chen","doi":"10.1016/j.matlet.2025.138535","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a high-yield strength and high-toughness transformation-induced plasticity (TRIP) titanium alloy design strategy, utilizing deformation-induced metastable β-phase and localized TRIP effects, while optimizing its fabrication through a short-process thermomechanical treatment. The results show that rolling-induced metastable β-phase can undergo localized TRIP effects during plastic deformation, significantly enhancing the yield strength (1250 MPa) of the alloy and avoiding the issue of yield strength drop in traditional TRIP titanium alloys caused by large-scale SIM (stress-induced martensitic transformation). Furthermore, SIM-dislocation interactions provide a dynamic strengthening mechanism, enabling the alloy to achieve high strength while maintaining excellent strength-ductility synergy. Meanwhile, a short-process fabrication route combining solution treatment and deformation-induced β-phase stability tuning eliminates the aging treatment required in conventional titanium alloys, significantly reducing manufacturing costs while enhancing feasibility for large-scale industrial applications. This design strategy, which leverages deformation-induced metastable structures and localized TRIP effects, achieves ideal mechanical properties, offering new insights for the development of high-strength and high-toughness materials.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"392 ","pages":"Article 138535"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-yield-strength TRIP titanium alloy: a low-cost and short-process manufacturing approach\",\"authors\":\"Junyang Chen, Zhilei Xiang, Cheng Qian, Zongyi Zhou, Bing Wang, Jihao Li, Ziyong Chen\",\"doi\":\"10.1016/j.matlet.2025.138535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study proposes a high-yield strength and high-toughness transformation-induced plasticity (TRIP) titanium alloy design strategy, utilizing deformation-induced metastable β-phase and localized TRIP effects, while optimizing its fabrication through a short-process thermomechanical treatment. The results show that rolling-induced metastable β-phase can undergo localized TRIP effects during plastic deformation, significantly enhancing the yield strength (1250 MPa) of the alloy and avoiding the issue of yield strength drop in traditional TRIP titanium alloys caused by large-scale SIM (stress-induced martensitic transformation). Furthermore, SIM-dislocation interactions provide a dynamic strengthening mechanism, enabling the alloy to achieve high strength while maintaining excellent strength-ductility synergy. Meanwhile, a short-process fabrication route combining solution treatment and deformation-induced β-phase stability tuning eliminates the aging treatment required in conventional titanium alloys, significantly reducing manufacturing costs while enhancing feasibility for large-scale industrial applications. This design strategy, which leverages deformation-induced metastable structures and localized TRIP effects, achieves ideal mechanical properties, offering new insights for the development of high-strength and high-toughness materials.</div></div>\",\"PeriodicalId\":384,\"journal\":{\"name\":\"Materials Letters\",\"volume\":\"392 \",\"pages\":\"Article 138535\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167577X25005646\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X25005646","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
High-yield-strength TRIP titanium alloy: a low-cost and short-process manufacturing approach
This study proposes a high-yield strength and high-toughness transformation-induced plasticity (TRIP) titanium alloy design strategy, utilizing deformation-induced metastable β-phase and localized TRIP effects, while optimizing its fabrication through a short-process thermomechanical treatment. The results show that rolling-induced metastable β-phase can undergo localized TRIP effects during plastic deformation, significantly enhancing the yield strength (1250 MPa) of the alloy and avoiding the issue of yield strength drop in traditional TRIP titanium alloys caused by large-scale SIM (stress-induced martensitic transformation). Furthermore, SIM-dislocation interactions provide a dynamic strengthening mechanism, enabling the alloy to achieve high strength while maintaining excellent strength-ductility synergy. Meanwhile, a short-process fabrication route combining solution treatment and deformation-induced β-phase stability tuning eliminates the aging treatment required in conventional titanium alloys, significantly reducing manufacturing costs while enhancing feasibility for large-scale industrial applications. This design strategy, which leverages deformation-induced metastable structures and localized TRIP effects, achieves ideal mechanical properties, offering new insights for the development of high-strength and high-toughness materials.
期刊介绍:
Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials.
Contributions include, but are not limited to, a variety of topics such as:
• Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors
• Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart
• Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction
• Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots.
• Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing.
• Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic
• Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive