{"title":"基于金属有机框架的二氧化碳增值策略的革命性进展","authors":"Sheraz Ahmed , Muhammad Kashif Khan , Jaehoon Kim","doi":"10.1016/j.ccst.2025.100405","DOIUrl":null,"url":null,"abstract":"<div><div>The conversion of CO<sub>2</sub> to value-added chemicals garners considerable attention because it produces renewable hydrocarbon fuels for use in the chemical industry and simultaneously reduces the atmospheric CO<sub>2</sub> concentration to mitigate the effects of global warming. Recently, researchers attempted to produce energy and chemicals via the electro-, thermo-, and photocatalytic conversion of CO<sub>2</sub> to realize sustainability and carbon neutrality. However, owing to the high thermodynamic stability of CO<sub>2</sub>, these approaches are not yet ready for implementation in large-scale applications owing to their insufficient activities and selectivities and the stabilities toward resulting hydrocarbons. Therefore, more effective catalysts should be designed to transform CO<sub>2</sub> into various compounds. Porous crystalline frameworks, such as metal-organic frameworks (MOFs), are promising for use in catalytic CO<sub>2</sub> conversion, owing to their strong CO<sub>2</sub> adsorption capacities, high surface areas, high porosity and chemical compositions, and adjustable active sites. Here, we present the structure-activity interactions that may direct the development of efficient catalysts and provide an overview of the recent studies regarding MOF-based materials for use in electro-, thermo-, and photocatalytic CO<sub>2</sub> conversion and integrated CO<sub>2</sub> technologies, including photoelectrocatalytic and electro- and photothermal CO<sub>2</sub> reduction.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"15 ","pages":"Article 100405"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revolutionary advancements in carbon dioxide valorization via metal-organic framework-based strategies\",\"authors\":\"Sheraz Ahmed , Muhammad Kashif Khan , Jaehoon Kim\",\"doi\":\"10.1016/j.ccst.2025.100405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The conversion of CO<sub>2</sub> to value-added chemicals garners considerable attention because it produces renewable hydrocarbon fuels for use in the chemical industry and simultaneously reduces the atmospheric CO<sub>2</sub> concentration to mitigate the effects of global warming. Recently, researchers attempted to produce energy and chemicals via the electro-, thermo-, and photocatalytic conversion of CO<sub>2</sub> to realize sustainability and carbon neutrality. However, owing to the high thermodynamic stability of CO<sub>2</sub>, these approaches are not yet ready for implementation in large-scale applications owing to their insufficient activities and selectivities and the stabilities toward resulting hydrocarbons. Therefore, more effective catalysts should be designed to transform CO<sub>2</sub> into various compounds. Porous crystalline frameworks, such as metal-organic frameworks (MOFs), are promising for use in catalytic CO<sub>2</sub> conversion, owing to their strong CO<sub>2</sub> adsorption capacities, high surface areas, high porosity and chemical compositions, and adjustable active sites. Here, we present the structure-activity interactions that may direct the development of efficient catalysts and provide an overview of the recent studies regarding MOF-based materials for use in electro-, thermo-, and photocatalytic CO<sub>2</sub> conversion and integrated CO<sub>2</sub> technologies, including photoelectrocatalytic and electro- and photothermal CO<sub>2</sub> reduction.</div></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":\"15 \",\"pages\":\"Article 100405\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656825000454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825000454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Revolutionary advancements in carbon dioxide valorization via metal-organic framework-based strategies
The conversion of CO2 to value-added chemicals garners considerable attention because it produces renewable hydrocarbon fuels for use in the chemical industry and simultaneously reduces the atmospheric CO2 concentration to mitigate the effects of global warming. Recently, researchers attempted to produce energy and chemicals via the electro-, thermo-, and photocatalytic conversion of CO2 to realize sustainability and carbon neutrality. However, owing to the high thermodynamic stability of CO2, these approaches are not yet ready for implementation in large-scale applications owing to their insufficient activities and selectivities and the stabilities toward resulting hydrocarbons. Therefore, more effective catalysts should be designed to transform CO2 into various compounds. Porous crystalline frameworks, such as metal-organic frameworks (MOFs), are promising for use in catalytic CO2 conversion, owing to their strong CO2 adsorption capacities, high surface areas, high porosity and chemical compositions, and adjustable active sites. Here, we present the structure-activity interactions that may direct the development of efficient catalysts and provide an overview of the recent studies regarding MOF-based materials for use in electro-, thermo-, and photocatalytic CO2 conversion and integrated CO2 technologies, including photoelectrocatalytic and electro- and photothermal CO2 reduction.