圆弧色有向图中的彩虹传递三角形

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Mengyu Duan , Zhiwei Guo , Binlong Li , Shenggui Zhang
{"title":"圆弧色有向图中的彩虹传递三角形","authors":"Mengyu Duan ,&nbsp;Zhiwei Guo ,&nbsp;Binlong Li ,&nbsp;Shenggui Zhang","doi":"10.1016/j.dam.2025.04.011","DOIUrl":null,"url":null,"abstract":"<div><div>A subdigraph of an arc-colored digraph is <em>rainbow</em> if its all arcs have distinct colors. For two digraphs <span><math><mi>D</mi></math></span> and <span><math><mi>H</mi></math></span>, let <span><math><mrow><mi>r</mi><mi>b</mi><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> be the minimum integer such that every arc-colored digraph <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>C</mi></mrow></msup></math></span> with <span><math><mrow><mi>c</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>≥</mo><mi>r</mi><mi>b</mi><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> contains a rainbow copy of <span><math><mi>H</mi></math></span>, where <span><math><mrow><mi>c</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> is the number of colors of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>C</mi></mrow></msup></math></span>. Let <span><math><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover></math></span> be the digraph obtained from the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> by replacing each edge <span><math><mrow><mi>u</mi><mi>v</mi></mrow></math></span> with a pair of symmetric arcs <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></math></span> and <span><math><mrow><mo>(</mo><mi>v</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow></math></span>, and let <span><math><mover><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mo>⃗</mo></mover></math></span> be the transitive triangle. In this paper we determine <span><math><mrow><mi>r</mi><mi>b</mi><mrow><mo>(</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover><mo>,</mo><mover><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mo>⃗</mo></mover><mo>)</mo></mrow></mrow></math></span> and characterize the corresponding extremal arc-colorings of <span><math><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover></math></span>. Further, we prove that an arc-colored digraph <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>C</mi></mrow></msup></math></span> on <span><math><mi>n</mi></math></span> vertices contains a rainbow <span><math><mover><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mo>⃗</mo></mover></math></span> if <span><math><mrow><mi>a</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>+</mo><mi>c</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>≥</mo><mi>a</mi><mrow><mo>(</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover><mo>)</mo></mrow><mo>+</mo><mi>r</mi><mi>b</mi><mrow><mo>(</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover><mo>,</mo><mover><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mo>⃗</mo></mover><mo>)</mo></mrow></mrow></math></span>. Moreover, if <span><math><mrow><mi>a</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>+</mo><mi>c</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>=</mo><mi>a</mi><mrow><mo>(</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover><mo>)</mo></mrow><mo>+</mo><mi>r</mi><mi>b</mi><mrow><mo>(</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover><mo>,</mo><mover><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mo>⃗</mo></mover><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span> and <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>C</mi></mrow></msup></math></span> contains no rainbow <span><math><mover><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mo>⃗</mo></mover></math></span>’s, then <span><math><mrow><mi>D</mi><mo>≅</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"370 ","pages":"Pages 175-184"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rainbow transitive triangles in arc-colored digraphs\",\"authors\":\"Mengyu Duan ,&nbsp;Zhiwei Guo ,&nbsp;Binlong Li ,&nbsp;Shenggui Zhang\",\"doi\":\"10.1016/j.dam.2025.04.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A subdigraph of an arc-colored digraph is <em>rainbow</em> if its all arcs have distinct colors. For two digraphs <span><math><mi>D</mi></math></span> and <span><math><mi>H</mi></math></span>, let <span><math><mrow><mi>r</mi><mi>b</mi><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> be the minimum integer such that every arc-colored digraph <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>C</mi></mrow></msup></math></span> with <span><math><mrow><mi>c</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>≥</mo><mi>r</mi><mi>b</mi><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> contains a rainbow copy of <span><math><mi>H</mi></math></span>, where <span><math><mrow><mi>c</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> is the number of colors of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>C</mi></mrow></msup></math></span>. Let <span><math><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover></math></span> be the digraph obtained from the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> by replacing each edge <span><math><mrow><mi>u</mi><mi>v</mi></mrow></math></span> with a pair of symmetric arcs <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></math></span> and <span><math><mrow><mo>(</mo><mi>v</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow></math></span>, and let <span><math><mover><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mo>⃗</mo></mover></math></span> be the transitive triangle. In this paper we determine <span><math><mrow><mi>r</mi><mi>b</mi><mrow><mo>(</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover><mo>,</mo><mover><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mo>⃗</mo></mover><mo>)</mo></mrow></mrow></math></span> and characterize the corresponding extremal arc-colorings of <span><math><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover></math></span>. Further, we prove that an arc-colored digraph <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>C</mi></mrow></msup></math></span> on <span><math><mi>n</mi></math></span> vertices contains a rainbow <span><math><mover><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mo>⃗</mo></mover></math></span> if <span><math><mrow><mi>a</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>+</mo><mi>c</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>≥</mo><mi>a</mi><mrow><mo>(</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover><mo>)</mo></mrow><mo>+</mo><mi>r</mi><mi>b</mi><mrow><mo>(</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover><mo>,</mo><mover><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mo>⃗</mo></mover><mo>)</mo></mrow></mrow></math></span>. Moreover, if <span><math><mrow><mi>a</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>+</mo><mi>c</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>=</mo><mi>a</mi><mrow><mo>(</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover><mo>)</mo></mrow><mo>+</mo><mi>r</mi><mi>b</mi><mrow><mo>(</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover><mo>,</mo><mover><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mo>⃗</mo></mover><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span> and <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>C</mi></mrow></msup></math></span> contains no rainbow <span><math><mover><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mo>⃗</mo></mover></math></span>’s, then <span><math><mrow><mi>D</mi><mo>≅</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover></mrow></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"370 \",\"pages\":\"Pages 175-184\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25001805\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001805","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

如果一个弧形有向图的所有弧线都有不同的颜色,那么它的子图就是彩虹。对于两个有向图D和H,设rb(D,H)为最小整数,使得每个c(D)≥rb(D,H)的弧形有向图DC都包含一个H的彩虹副本,其中c(D)为DC的颜色数。设Kn是由完全图Kn通过用一对对称弧(u,v)和(v,u)代替每条边uv得到的有向图,设T3∈为传递三角形。本文确定了rb(Kn↔,T3∈)并描述了Kn↔的相应极值弧染色。进一步,我们证明了n个顶点上的弧色有向图DC如果a(D)+c(D)≥a(Kn↔)+rb(Kn↔,T3′)包含彩虹T3′。并且,若a(D)+c(D)=a(Kn↔)+rb(Kn↔,T3′)−1且DC不包含彩虹T3′s,则D = Kn↔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rainbow transitive triangles in arc-colored digraphs
A subdigraph of an arc-colored digraph is rainbow if its all arcs have distinct colors. For two digraphs D and H, let rb(D,H) be the minimum integer such that every arc-colored digraph DC with c(D)rb(D,H) contains a rainbow copy of H, where c(D) is the number of colors of DC. Let Kn be the digraph obtained from the complete graph Kn by replacing each edge uv with a pair of symmetric arcs (u,v) and (v,u), and let T3 be the transitive triangle. In this paper we determine rb(Kn,T3) and characterize the corresponding extremal arc-colorings of Kn. Further, we prove that an arc-colored digraph DC on n vertices contains a rainbow T3 if a(D)+c(D)a(Kn)+rb(Kn,T3). Moreover, if a(D)+c(D)=a(Kn)+rb(Kn,T3)1 and DC contains no rainbow T3’s, then DKn.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信