{"title":"Teichmüller 空间的等距嵌入不扩展到 Gardiner-Masur 压缩","authors":"Yaozhong Shi , Wen Yang","doi":"10.1016/j.jmaa.2025.129566","DOIUrl":null,"url":null,"abstract":"<div><div>It is known that a finitely unbranched covering <span><math><mi>π</mi><mo>:</mo><mover><mrow><mi>S</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>→</mo><mi>S</mi></math></span> between two closed Riemann surfaces induces an isometric embedding <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>:</mo><mi>T</mi><mo>(</mo><mi>S</mi><mo>)</mo><mo>→</mo><mi>T</mi><mo>(</mo><mover><mrow><mi>S</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span> between the corresponding Teichmüller spaces. We prove that if <em>π</em> is not a homeomorphism, then the induced isometric embedding <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>:</mo><mi>T</mi><mo>(</mo><mi>S</mi><mo>)</mo><mo>→</mo><mi>T</mi><mo>(</mo><mover><mrow><mi>S</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span> doesn't extend continuously to the Gardiner-Masur compactification of the Teichmüller space, in contrast to the case of Thurston compactification and the case of augmented Teichmüller space.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129566"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isometric embeddings of Teichmüller spaces don't extend to the Gardiner-Masur compactification\",\"authors\":\"Yaozhong Shi , Wen Yang\",\"doi\":\"10.1016/j.jmaa.2025.129566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is known that a finitely unbranched covering <span><math><mi>π</mi><mo>:</mo><mover><mrow><mi>S</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>→</mo><mi>S</mi></math></span> between two closed Riemann surfaces induces an isometric embedding <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>:</mo><mi>T</mi><mo>(</mo><mi>S</mi><mo>)</mo><mo>→</mo><mi>T</mi><mo>(</mo><mover><mrow><mi>S</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span> between the corresponding Teichmüller spaces. We prove that if <em>π</em> is not a homeomorphism, then the induced isometric embedding <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>:</mo><mi>T</mi><mo>(</mo><mi>S</mi><mo>)</mo><mo>→</mo><mi>T</mi><mo>(</mo><mover><mrow><mi>S</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span> doesn't extend continuously to the Gardiner-Masur compactification of the Teichmüller space, in contrast to the case of Thurston compactification and the case of augmented Teichmüller space.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"550 2\",\"pages\":\"Article 129566\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25003476\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003476","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Isometric embeddings of Teichmüller spaces don't extend to the Gardiner-Masur compactification
It is known that a finitely unbranched covering between two closed Riemann surfaces induces an isometric embedding between the corresponding Teichmüller spaces. We prove that if π is not a homeomorphism, then the induced isometric embedding doesn't extend continuously to the Gardiner-Masur compactification of the Teichmüller space, in contrast to the case of Thurston compactification and the case of augmented Teichmüller space.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.