沃德微积分中的微分方程

IF 1.2 3区 数学 Q1 MATHEMATICS
Ana Luzón , Manuel A. Morón , José L. Ramírez
{"title":"沃德微积分中的微分方程","authors":"Ana Luzón ,&nbsp;Manuel A. Morón ,&nbsp;José L. Ramírez","doi":"10.1016/j.jmaa.2025.129557","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we solve some differential equations in the <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span> derivative in Ward's sense. We use a special metric in the formal power series ring <span><math><mi>K</mi><mo>[</mo><mo>[</mo><mi>x</mi><mo>]</mo><mo>]</mo></math></span>. The solutions of those equations are given in terms of fixed points for certain contractive maps in our metric framework. Our main tools are Banach's fixed point theorem, the fundamental theorem of calculus, and Barrow's rule for Ward's calculus. Later, we return to the usual differential calculus via Sheffer's expansion of some kind of operators. Finally, we give some examples related, in some sense, to combinatorics.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129557"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential equations in Ward's calculus\",\"authors\":\"Ana Luzón ,&nbsp;Manuel A. Morón ,&nbsp;José L. Ramírez\",\"doi\":\"10.1016/j.jmaa.2025.129557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we solve some differential equations in the <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span> derivative in Ward's sense. We use a special metric in the formal power series ring <span><math><mi>K</mi><mo>[</mo><mo>[</mo><mi>x</mi><mo>]</mo><mo>]</mo></math></span>. The solutions of those equations are given in terms of fixed points for certain contractive maps in our metric framework. Our main tools are Banach's fixed point theorem, the fundamental theorem of calculus, and Barrow's rule for Ward's calculus. Later, we return to the usual differential calculus via Sheffer's expansion of some kind of operators. Finally, we give some examples related, in some sense, to combinatorics.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"550 2\",\"pages\":\"Article 129557\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25003385\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003385","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在Ward意义下,我们解了一些微分方程的Dh导数。我们在幂级数环K[[x]]中使用了一个特殊的度量。在我们的度量框架中,用不动点的形式给出了这些方程的解。我们的主要工具是巴拿赫不动点定理,微积分基本定理,以及沃德微积分的巴罗法则。稍后,我们将通过某些算子的Sheffer展开式回到常用的微分学。最后,我们给出一些在某种意义上与组合学有关的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential equations in Ward's calculus
In this paper, we solve some differential equations in the Dh derivative in Ward's sense. We use a special metric in the formal power series ring K[[x]]. The solutions of those equations are given in terms of fixed points for certain contractive maps in our metric framework. Our main tools are Banach's fixed point theorem, the fundamental theorem of calculus, and Barrow's rule for Ward's calculus. Later, we return to the usual differential calculus via Sheffer's expansion of some kind of operators. Finally, we give some examples related, in some sense, to combinatorics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信