Mateo Vélez-Hernández , Paul Muñoz , Esteban Samaniego , María José Merizalde , Rolando Célleri
{"title":"利用GOES-16数据和U-net卷积神经网络建模方法推进imerger的及时卫星降水","authors":"Mateo Vélez-Hernández , Paul Muñoz , Esteban Samaniego , María José Merizalde , Rolando Célleri","doi":"10.1016/j.envsoft.2025.106457","DOIUrl":null,"url":null,"abstract":"<div><div>Timely precipitation information is essential for water resources management and hazard monitoring. In regions with limited ground-based measurements, satellite precipitation products (SPPs) provide a valuable alternative, though data latency often creates an information gap for real-time applications. This study addresses the latency gap of IMERG-ER using a U-Net-based Convolutional Neural Network (CNN) model, trained with near-instantaneous GOES-16 satellite data. The optimal combination of GOES-16 infrared bands (6.2, 6.9, 7.3, 8.4, and 11.2 μm) was determined to enhance IMERG-ER predictions. The CNN model's performance, evaluated with both quantitative and qualitative metrics, showed an RMSE of 0.46 mm/h, a Pearson's correlation coefficient of 0.60, and a Critical Success Index of 0.53. The model performed well in predicting low-intensity precipitation (<3 mm/h), which occurs 97 % of the time, but faced challenges with high-intensity events due to data imbalance. These findings advance the use of SPPs and deep learning for operational hydrology.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"189 ","pages":"Article 106457"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing timely satellite precipitation for IMERG-ER using GOES-16 data and a U-net convolutional neural network modelling approach\",\"authors\":\"Mateo Vélez-Hernández , Paul Muñoz , Esteban Samaniego , María José Merizalde , Rolando Célleri\",\"doi\":\"10.1016/j.envsoft.2025.106457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Timely precipitation information is essential for water resources management and hazard monitoring. In regions with limited ground-based measurements, satellite precipitation products (SPPs) provide a valuable alternative, though data latency often creates an information gap for real-time applications. This study addresses the latency gap of IMERG-ER using a U-Net-based Convolutional Neural Network (CNN) model, trained with near-instantaneous GOES-16 satellite data. The optimal combination of GOES-16 infrared bands (6.2, 6.9, 7.3, 8.4, and 11.2 μm) was determined to enhance IMERG-ER predictions. The CNN model's performance, evaluated with both quantitative and qualitative metrics, showed an RMSE of 0.46 mm/h, a Pearson's correlation coefficient of 0.60, and a Critical Success Index of 0.53. The model performed well in predicting low-intensity precipitation (<3 mm/h), which occurs 97 % of the time, but faced challenges with high-intensity events due to data imbalance. These findings advance the use of SPPs and deep learning for operational hydrology.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"189 \",\"pages\":\"Article 106457\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225001410\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225001410","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Advancing timely satellite precipitation for IMERG-ER using GOES-16 data and a U-net convolutional neural network modelling approach
Timely precipitation information is essential for water resources management and hazard monitoring. In regions with limited ground-based measurements, satellite precipitation products (SPPs) provide a valuable alternative, though data latency often creates an information gap for real-time applications. This study addresses the latency gap of IMERG-ER using a U-Net-based Convolutional Neural Network (CNN) model, trained with near-instantaneous GOES-16 satellite data. The optimal combination of GOES-16 infrared bands (6.2, 6.9, 7.3, 8.4, and 11.2 μm) was determined to enhance IMERG-ER predictions. The CNN model's performance, evaluated with both quantitative and qualitative metrics, showed an RMSE of 0.46 mm/h, a Pearson's correlation coefficient of 0.60, and a Critical Success Index of 0.53. The model performed well in predicting low-intensity precipitation (<3 mm/h), which occurs 97 % of the time, but faced challenges with high-intensity events due to data imbalance. These findings advance the use of SPPs and deep learning for operational hydrology.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.