正交加性算子的片段与非线性dods - fremlin定理

IF 1.2 3区 数学 Q1 MATHEMATICS
Karimbergen Kudaybergenov , Marat Pliev , Fedor Sukochev
{"title":"正交加性算子的片段与非线性dods - fremlin定理","authors":"Karimbergen Kudaybergenov ,&nbsp;Marat Pliev ,&nbsp;Fedor Sukochev","doi":"10.1016/j.jmaa.2025.129551","DOIUrl":null,"url":null,"abstract":"<div><div>In the first part of the paper we describe the structure of the Boolean algebra <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span> of all fragments of a positive orthogonally additive operator <span><math><mi>T</mi><mo>:</mo><mi>E</mi><mo>→</mo><mi>F</mi></math></span>, generalizing classical results of Aliprantis, Burkinshaw, de Pagter to the setting of orthogonally additive (in general nonlinear) operators on Banach lattices. In the second part of the article we present the nonlinear version of the well known Dodds-Fremlin's theorem.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129551"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fragments of orthogonally additive operators and the nonlinear Dodds-Fremlin's theorem\",\"authors\":\"Karimbergen Kudaybergenov ,&nbsp;Marat Pliev ,&nbsp;Fedor Sukochev\",\"doi\":\"10.1016/j.jmaa.2025.129551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the first part of the paper we describe the structure of the Boolean algebra <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span> of all fragments of a positive orthogonally additive operator <span><math><mi>T</mi><mo>:</mo><mi>E</mi><mo>→</mo><mi>F</mi></math></span>, generalizing classical results of Aliprantis, Burkinshaw, de Pagter to the setting of orthogonally additive (in general nonlinear) operators on Banach lattices. In the second part of the article we present the nonlinear version of the well known Dodds-Fremlin's theorem.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"550 2\",\"pages\":\"Article 129551\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25003324\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003324","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文第一部分描述了正正交可加算子T:E→F的所有片段的布尔代数FT的结构,将Aliprantis, Burkinshaw, de Pagter的经典结果推广到Banach格上正交可加(一般非线性)算子的集合。在文章的第二部分,我们给出了著名的多兹-弗雷姆林定理的非线性版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fragments of orthogonally additive operators and the nonlinear Dodds-Fremlin's theorem
In the first part of the paper we describe the structure of the Boolean algebra FT of all fragments of a positive orthogonally additive operator T:EF, generalizing classical results of Aliprantis, Burkinshaw, de Pagter to the setting of orthogonally additive (in general nonlinear) operators on Banach lattices. In the second part of the article we present the nonlinear version of the well known Dodds-Fremlin's theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信