混合Besov空间中某些Oldroyd型模型解的整体存在性和长时性

IF 1.2 3区 数学 Q1 MATHEMATICS
Hantaek Bae , Jaeyong Shin
{"title":"混合Besov空间中某些Oldroyd型模型解的整体存在性和长时性","authors":"Hantaek Bae ,&nbsp;Jaeyong Shin","doi":"10.1016/j.jmaa.2025.129547","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we deal with some Oldroyd type models, which describe incompressible viscoelastic fluids. There are 3 parameters in these models: the viscous coefficient of fluid <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, the viscous coefficient of the elastic part of the stress tensor <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and the damping coefficient of the elastic part of the stress tensor <em>α</em>. In this paper, we assume at least one of the parameters is zero: <span><math><mo>(</mo><msub><mrow><mi>ν</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ν</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>α</mi><mo>)</mo><mo>=</mo><mo>(</mo><mo>+</mo><mo>,</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>)</mo><mo>,</mo><mo>(</mo><mo>+</mo><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo><mo>,</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>,</mo><mo>+</mo><mo>)</mo><mo>,</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>,</mo><mn>0</mn><mo>)</mo><mo>,</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>)</mo></math></span> and prove the global existence of unique solutions to all these 5 cases in the framework of hybrid Besov spaces. We also derive decay rates of the solutions except for the case <span><math><mo>(</mo><msub><mrow><mi>ν</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ν</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>α</mi><mo>)</mo><mo>=</mo><mo>(</mo><mo>+</mo><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></math></span>. To the best of our knowledge, decay rates in this paper are the first results in this framework, and can improve some previous works.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129547"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global existence and long time behavior of solutions to some Oldroyd type models in hybrid Besov spaces\",\"authors\":\"Hantaek Bae ,&nbsp;Jaeyong Shin\",\"doi\":\"10.1016/j.jmaa.2025.129547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we deal with some Oldroyd type models, which describe incompressible viscoelastic fluids. There are 3 parameters in these models: the viscous coefficient of fluid <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, the viscous coefficient of the elastic part of the stress tensor <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and the damping coefficient of the elastic part of the stress tensor <em>α</em>. In this paper, we assume at least one of the parameters is zero: <span><math><mo>(</mo><msub><mrow><mi>ν</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ν</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>α</mi><mo>)</mo><mo>=</mo><mo>(</mo><mo>+</mo><mo>,</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>)</mo><mo>,</mo><mo>(</mo><mo>+</mo><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo><mo>,</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>,</mo><mo>+</mo><mo>)</mo><mo>,</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>,</mo><mn>0</mn><mo>)</mo><mo>,</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>)</mo></math></span> and prove the global existence of unique solutions to all these 5 cases in the framework of hybrid Besov spaces. We also derive decay rates of the solutions except for the case <span><math><mo>(</mo><msub><mrow><mi>ν</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ν</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>α</mi><mo>)</mo><mo>=</mo><mo>(</mo><mo>+</mo><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></math></span>. To the best of our knowledge, decay rates in this paper are the first results in this framework, and can improve some previous works.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"550 2\",\"pages\":\"Article 129547\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25003282\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003282","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了一些描述不可压缩粘弹性流体的Oldroyd型模型。这些模型中有3个参数:流体的粘性系数ν1,应力张量的弹性部分的粘性系数ν2,应力张量的弹性部分的阻尼系数α。本文假设至少有一个参数为零:(ν1,ν2,α)=(+,0,+),(+,0,0),(0,+,+),(0,+,0),(0, +,0),并证明了这5种情况在混合Besov空间框架下的全局唯一解的存在性。除了(ν1,ν2,α)=(+,0,0)的情况外,我们还导出了解的衰减率。据我们所知,本文中的衰减率是该框架中的第一个结果,可以改进以前的一些工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global existence and long time behavior of solutions to some Oldroyd type models in hybrid Besov spaces
In this paper, we deal with some Oldroyd type models, which describe incompressible viscoelastic fluids. There are 3 parameters in these models: the viscous coefficient of fluid ν1, the viscous coefficient of the elastic part of the stress tensor ν2, and the damping coefficient of the elastic part of the stress tensor α. In this paper, we assume at least one of the parameters is zero: (ν1,ν2,α)=(+,0,+),(+,0,0),(0,+,+),(0,+,0),(0,0,+) and prove the global existence of unique solutions to all these 5 cases in the framework of hybrid Besov spaces. We also derive decay rates of the solutions except for the case (ν1,ν2,α)=(+,0,0). To the best of our knowledge, decay rates in this paper are the first results in this framework, and can improve some previous works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信