{"title":"微分包含系统与双相竞争算子,对流,和混合边界条件","authors":"Jinxia Cen , Salvatore A. Marano , Shengda Zeng","doi":"10.1016/j.aml.2025.109556","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a new framework for studying the existence of generalized or strongly generalized solutions to a wide class of inclusion systems involving double-phase, possibly competing differential operators, convection, and mixed boundary conditions is introduced. The technical approach exploits Galerkin’s method and a surjective theorem for multifunctions in finite dimensional spaces.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"167 ","pages":"Article 109556"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential inclusion systems with double phase competing operators, convection, and mixed boundary conditions\",\"authors\":\"Jinxia Cen , Salvatore A. Marano , Shengda Zeng\",\"doi\":\"10.1016/j.aml.2025.109556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a new framework for studying the existence of generalized or strongly generalized solutions to a wide class of inclusion systems involving double-phase, possibly competing differential operators, convection, and mixed boundary conditions is introduced. The technical approach exploits Galerkin’s method and a surjective theorem for multifunctions in finite dimensional spaces.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"167 \",\"pages\":\"Article 109556\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925001065\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925001065","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Differential inclusion systems with double phase competing operators, convection, and mixed boundary conditions
In this paper, a new framework for studying the existence of generalized or strongly generalized solutions to a wide class of inclusion systems involving double-phase, possibly competing differential operators, convection, and mixed boundary conditions is introduced. The technical approach exploits Galerkin’s method and a surjective theorem for multifunctions in finite dimensional spaces.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.