q-bic形式

IF 0.8 2区 数学 Q2 MATHEMATICS
Raymond Cheng
{"title":"q-bic形式","authors":"Raymond Cheng","doi":"10.1016/j.jalgebra.2025.03.031","DOIUrl":null,"url":null,"abstract":"<div><div>A <em>q-bic form</em> is a pairing <span><math><mi>V</mi><mo>×</mo><mi>V</mi><mo>→</mo><mi>k</mi></math></span> that is linear in the second variable and <em>q</em>-power Frobenius linear in the first; here, <em>V</em> is a vector space over a field <strong>k</strong> containing the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>. This article develops a geometric theory of <em>q</em>-bic forms in the spirit of that of bilinear forms. I find two filtrations intrinsically attached to a <em>q</em>-bic form, with which I define a series of numerical invariants. These are used to classify, study automorphism group schemes of, and describe specialization relations in the parameter space of <em>q</em>-bic forms.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"675 ","pages":"Pages 196-236"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"q-bic forms\",\"authors\":\"Raymond Cheng\",\"doi\":\"10.1016/j.jalgebra.2025.03.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A <em>q-bic form</em> is a pairing <span><math><mi>V</mi><mo>×</mo><mi>V</mi><mo>→</mo><mi>k</mi></math></span> that is linear in the second variable and <em>q</em>-power Frobenius linear in the first; here, <em>V</em> is a vector space over a field <strong>k</strong> containing the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>. This article develops a geometric theory of <em>q</em>-bic forms in the spirit of that of bilinear forms. I find two filtrations intrinsically attached to a <em>q</em>-bic form, with which I define a series of numerical invariants. These are used to classify, study automorphism group schemes of, and describe specialization relations in the parameter space of <em>q</em>-bic forms.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"675 \",\"pages\":\"Pages 196-236\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325001772\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325001772","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

q-bic形式是一个配对V×V→k在第二个变量中是线性的,在第一个变量中是q-幂Frobenius线性的;这里,V是包含有限场Fq2的场k上的向量空间。本文以双线性形式的几何理论为精神,发展了q-bic形式的几何理论。我找到了两个本质上依附于q-bic形式的过滤,我用它定义了一系列数值不变量。它们被用来分类、研究q-bic型的自同构群方案,并描述q-bic型参数空间中的专门化关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
q-bic forms
A q-bic form is a pairing V×Vk that is linear in the second variable and q-power Frobenius linear in the first; here, V is a vector space over a field k containing the finite field Fq2. This article develops a geometric theory of q-bic forms in the spirit of that of bilinear forms. I find two filtrations intrinsically attached to a q-bic form, with which I define a series of numerical invariants. These are used to classify, study automorphism group schemes of, and describe specialization relations in the parameter space of q-bic forms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信