非中心球面平均和空洞极大函数的lp估计

IF 1.2 3区 数学 Q1 MATHEMATICS
Ankit Bhojak , Surjeet Singh Choudhary , Saurabh Shrivastava , Kalachand Shuin
{"title":"非中心球面平均和空洞极大函数的lp估计","authors":"Ankit Bhojak ,&nbsp;Surjeet Singh Choudhary ,&nbsp;Saurabh Shrivastava ,&nbsp;Kalachand Shuin","doi":"10.1016/j.jmaa.2025.129555","DOIUrl":null,"url":null,"abstract":"<div><div>The primary goal of this paper is to introduce bilinear analogues of uncentered spherical averages, Nikodym averages associated with spheres and the associated bilinear maximal functions. We obtain <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-estimates for uncentered bilinear maximal functions for dimensions <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. Moreover, we also discuss the one-dimensional case. In the process of developing these results, we also establish new and interesting results in the linear case. In particular, we will prove <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-improving properties for single scale averaging operators and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-estimates for lacunary maximal functions in this context.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129555"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lp-estimates for uncentered spherical averages and lacunary maximal functions\",\"authors\":\"Ankit Bhojak ,&nbsp;Surjeet Singh Choudhary ,&nbsp;Saurabh Shrivastava ,&nbsp;Kalachand Shuin\",\"doi\":\"10.1016/j.jmaa.2025.129555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The primary goal of this paper is to introduce bilinear analogues of uncentered spherical averages, Nikodym averages associated with spheres and the associated bilinear maximal functions. We obtain <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-estimates for uncentered bilinear maximal functions for dimensions <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. Moreover, we also discuss the one-dimensional case. In the process of developing these results, we also establish new and interesting results in the linear case. In particular, we will prove <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-improving properties for single scale averaging operators and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-estimates for lacunary maximal functions in this context.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"549 1\",\"pages\":\"Article 129555\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25003361\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003361","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是介绍无心球平均的双线性类似物、与球相关的Nikodym平均和相关的双线性极大函数。我们得到了维数d≥2的无中心双线性极大函数的lp估计。此外,我们还讨论了一维情况。在发展这些结果的过程中,我们还在线性情况下建立了新的有趣的结果。特别地,我们将在此背景下证明单尺度平均算子的lp改进性质和空白极大函数的lp估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lp-estimates for uncentered spherical averages and lacunary maximal functions
The primary goal of this paper is to introduce bilinear analogues of uncentered spherical averages, Nikodym averages associated with spheres and the associated bilinear maximal functions. We obtain Lp-estimates for uncentered bilinear maximal functions for dimensions d2. Moreover, we also discuss the one-dimensional case. In the process of developing these results, we also establish new and interesting results in the linear case. In particular, we will prove Lp-improving properties for single scale averaging operators and Lp-estimates for lacunary maximal functions in this context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信