{"title":"非中心球面平均和空洞极大函数的lp估计","authors":"Ankit Bhojak , Surjeet Singh Choudhary , Saurabh Shrivastava , Kalachand Shuin","doi":"10.1016/j.jmaa.2025.129555","DOIUrl":null,"url":null,"abstract":"<div><div>The primary goal of this paper is to introduce bilinear analogues of uncentered spherical averages, Nikodym averages associated with spheres and the associated bilinear maximal functions. We obtain <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-estimates for uncentered bilinear maximal functions for dimensions <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. Moreover, we also discuss the one-dimensional case. In the process of developing these results, we also establish new and interesting results in the linear case. In particular, we will prove <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-improving properties for single scale averaging operators and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-estimates for lacunary maximal functions in this context.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129555"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lp-estimates for uncentered spherical averages and lacunary maximal functions\",\"authors\":\"Ankit Bhojak , Surjeet Singh Choudhary , Saurabh Shrivastava , Kalachand Shuin\",\"doi\":\"10.1016/j.jmaa.2025.129555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The primary goal of this paper is to introduce bilinear analogues of uncentered spherical averages, Nikodym averages associated with spheres and the associated bilinear maximal functions. We obtain <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-estimates for uncentered bilinear maximal functions for dimensions <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. Moreover, we also discuss the one-dimensional case. In the process of developing these results, we also establish new and interesting results in the linear case. In particular, we will prove <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-improving properties for single scale averaging operators and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-estimates for lacunary maximal functions in this context.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"549 1\",\"pages\":\"Article 129555\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25003361\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003361","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Lp-estimates for uncentered spherical averages and lacunary maximal functions
The primary goal of this paper is to introduce bilinear analogues of uncentered spherical averages, Nikodym averages associated with spheres and the associated bilinear maximal functions. We obtain -estimates for uncentered bilinear maximal functions for dimensions . Moreover, we also discuss the one-dimensional case. In the process of developing these results, we also establish new and interesting results in the linear case. In particular, we will prove -improving properties for single scale averaging operators and -estimates for lacunary maximal functions in this context.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.