{"title":"a系列全量子标志流形的Lusztig正根向量和Dolbeault复形","authors":"Réamonn Ó Buachalla, Petr Somberg","doi":"10.1016/j.jalgebra.2025.03.035","DOIUrl":null,"url":null,"abstract":"<div><div>For the Drinfeld–Jimbo quantum enveloping algebra <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span>, we show that the span of Lusztig's positive root vectors, with respect to Littlemann's nice reduced decompositions of the longest element of the Weyl group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>, form quantum tangent spaces for the full quantum flag manifold <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span>. The associated differential calculi are direct <em>q</em>-deformations of the anti-holomorphic Dolbeault complex of the classical full flag manifold <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. As an application we establish a quantum Borel–Weil theorem for <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span>, giving a noncommutative differential geometric realisation of all the finite-dimensional type-1 irreducible representations of <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span>. Restricting this differential calculus to the quantum Grassmannians is shown to reproduce the celebrated Heckenberger–Kolb anti-holomorphic Dolbeault complex. Lusztig's positive root vectors for non-nice decompositions of the longest element of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> are examined for low orders, and are exhibited to either not give tangents spaces, or to produce differential calculi of non-classical dimension.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"678 ","pages":"Pages 1-73"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lusztig's positive root vectors and a Dolbeault complex for the A-series full quantum flag manifolds\",\"authors\":\"Réamonn Ó Buachalla, Petr Somberg\",\"doi\":\"10.1016/j.jalgebra.2025.03.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For the Drinfeld–Jimbo quantum enveloping algebra <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span>, we show that the span of Lusztig's positive root vectors, with respect to Littlemann's nice reduced decompositions of the longest element of the Weyl group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>, form quantum tangent spaces for the full quantum flag manifold <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span>. The associated differential calculi are direct <em>q</em>-deformations of the anti-holomorphic Dolbeault complex of the classical full flag manifold <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. As an application we establish a quantum Borel–Weil theorem for <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span>, giving a noncommutative differential geometric realisation of all the finite-dimensional type-1 irreducible representations of <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span>. Restricting this differential calculus to the quantum Grassmannians is shown to reproduce the celebrated Heckenberger–Kolb anti-holomorphic Dolbeault complex. Lusztig's positive root vectors for non-nice decompositions of the longest element of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> are examined for low orders, and are exhibited to either not give tangents spaces, or to produce differential calculi of non-classical dimension.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"678 \",\"pages\":\"Pages 1-73\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325001838\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325001838","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Lusztig's positive root vectors and a Dolbeault complex for the A-series full quantum flag manifolds
For the Drinfeld–Jimbo quantum enveloping algebra , we show that the span of Lusztig's positive root vectors, with respect to Littlemann's nice reduced decompositions of the longest element of the Weyl group , form quantum tangent spaces for the full quantum flag manifold . The associated differential calculi are direct q-deformations of the anti-holomorphic Dolbeault complex of the classical full flag manifold . As an application we establish a quantum Borel–Weil theorem for , giving a noncommutative differential geometric realisation of all the finite-dimensional type-1 irreducible representations of . Restricting this differential calculus to the quantum Grassmannians is shown to reproduce the celebrated Heckenberger–Kolb anti-holomorphic Dolbeault complex. Lusztig's positive root vectors for non-nice decompositions of the longest element of are examined for low orders, and are exhibited to either not give tangents spaces, or to produce differential calculi of non-classical dimension.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.