a系列全量子标志流形的Lusztig正根向量和Dolbeault复形

IF 0.8 2区 数学 Q2 MATHEMATICS
Réamonn Ó Buachalla, Petr Somberg
{"title":"a系列全量子标志流形的Lusztig正根向量和Dolbeault复形","authors":"Réamonn Ó Buachalla,&nbsp;Petr Somberg","doi":"10.1016/j.jalgebra.2025.03.035","DOIUrl":null,"url":null,"abstract":"<div><div>For the Drinfeld–Jimbo quantum enveloping algebra <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span>, we show that the span of Lusztig's positive root vectors, with respect to Littlemann's nice reduced decompositions of the longest element of the Weyl group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>, form quantum tangent spaces for the full quantum flag manifold <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span>. The associated differential calculi are direct <em>q</em>-deformations of the anti-holomorphic Dolbeault complex of the classical full flag manifold <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. As an application we establish a quantum Borel–Weil theorem for <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span>, giving a noncommutative differential geometric realisation of all the finite-dimensional type-1 irreducible representations of <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span>. Restricting this differential calculus to the quantum Grassmannians is shown to reproduce the celebrated Heckenberger–Kolb anti-holomorphic Dolbeault complex. Lusztig's positive root vectors for non-nice decompositions of the longest element of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> are examined for low orders, and are exhibited to either not give tangents spaces, or to produce differential calculi of non-classical dimension.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"678 ","pages":"Pages 1-73"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lusztig's positive root vectors and a Dolbeault complex for the A-series full quantum flag manifolds\",\"authors\":\"Réamonn Ó Buachalla,&nbsp;Petr Somberg\",\"doi\":\"10.1016/j.jalgebra.2025.03.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For the Drinfeld–Jimbo quantum enveloping algebra <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span>, we show that the span of Lusztig's positive root vectors, with respect to Littlemann's nice reduced decompositions of the longest element of the Weyl group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>, form quantum tangent spaces for the full quantum flag manifold <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span>. The associated differential calculi are direct <em>q</em>-deformations of the anti-holomorphic Dolbeault complex of the classical full flag manifold <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. As an application we establish a quantum Borel–Weil theorem for <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span>, giving a noncommutative differential geometric realisation of all the finite-dimensional type-1 irreducible representations of <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span>. Restricting this differential calculus to the quantum Grassmannians is shown to reproduce the celebrated Heckenberger–Kolb anti-holomorphic Dolbeault complex. Lusztig's positive root vectors for non-nice decompositions of the longest element of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> are examined for low orders, and are exhibited to either not give tangents spaces, or to produce differential calculi of non-classical dimension.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"678 \",\"pages\":\"Pages 1-73\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325001838\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325001838","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于Drinfeld-Jimbo量子包络代数Uq(sln+1),我们证明了相对于Weyl群最长元素Sn+1的Littlemann nice约简分解,Lusztig的正根向量的张成空间形成了全量子标志流Oq(Fn+1)的量子切空间。相关的微分演算是经典满标志流形Fn+1的反全纯Dolbeault复形的直接q变形。作为应用,我们建立了Oq(Fn+1)的量子Borel-Weil定理,给出了Uq(sln+1)的所有有限维1型不可约表示的非交换微分几何实现。将这种微分法限制在量子格拉斯曼子上,可以再现著名的Heckenberger-Kolb反全纯Dolbeault复形。对于Sn+1的最长元素的非良好分解,Lusztig的正根向量在低阶情况下进行了检验,并被证明要么不给出切线空间,要么产生非经典维度的微分演算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lusztig's positive root vectors and a Dolbeault complex for the A-series full quantum flag manifolds
For the Drinfeld–Jimbo quantum enveloping algebra Uq(sln+1), we show that the span of Lusztig's positive root vectors, with respect to Littlemann's nice reduced decompositions of the longest element of the Weyl group Sn+1, form quantum tangent spaces for the full quantum flag manifold Oq(Fn+1). The associated differential calculi are direct q-deformations of the anti-holomorphic Dolbeault complex of the classical full flag manifold Fn+1. As an application we establish a quantum Borel–Weil theorem for Oq(Fn+1), giving a noncommutative differential geometric realisation of all the finite-dimensional type-1 irreducible representations of Uq(sln+1). Restricting this differential calculus to the quantum Grassmannians is shown to reproduce the celebrated Heckenberger–Kolb anti-holomorphic Dolbeault complex. Lusztig's positive root vectors for non-nice decompositions of the longest element of Sn+1 are examined for low orders, and are exhibited to either not give tangents spaces, or to produce differential calculi of non-classical dimension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信