直角各向异性CFRP板边缘反射lamb波的缺陷定位

IF 4.1 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Nan Zhang, Caibin Xu, Mingxi Deng
{"title":"直角各向异性CFRP板边缘反射lamb波的缺陷定位","authors":"Nan Zhang,&nbsp;Caibin Xu,&nbsp;Mingxi Deng","doi":"10.1016/j.ndteint.2025.103413","DOIUrl":null,"url":null,"abstract":"<div><div>The edge reflection of Lamb waves contains rich information about the structure, and is a promising tool for the structural health monitoring (SHM) of composite laminates. However, related investigation on its applicability in orthotropic composite laminates are still limited. To address this issue, this paper presents a defect localization method based on multipath edge reflected Lamb waves, which can be used for the SHM of square carbon fiber reinforced plastics (CFRP) laminates that have orthotropic material properties. Firstly, the feasibility of using edge reflections to detect defects in orthotropic materials is analyzed, laying the foundation for the construction of a multipath model. A modified dispersion compensation algorithm is then developed based on the equivalent dispersion relations, so as to minimize the influence of the orthotropic property on the signal waveform. On the basis, a four-step implementation process of the detection method is established, including identifying edge reflected wave packets, tracking theoretical virtual wave paths, matching wave packets with virtual paths, and imaging the detection area by fusing images of multipath wave packets. Experiments on three different defect cases show that the method can localize the defect on orthotropic CFRP laminates accurately, even its position is near the edges. Compared with the widely-used delay-and-sum algorithm, the method also performs better in the presence of strong edge reflections, thus can be an efficient SHM tool for the orthotropic CFRP laminates of small sizes.</div></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"155 ","pages":"Article 103413"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edge-reflected lamb wave exploitation for defect localization in square orthotropic CFRP laminates\",\"authors\":\"Nan Zhang,&nbsp;Caibin Xu,&nbsp;Mingxi Deng\",\"doi\":\"10.1016/j.ndteint.2025.103413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The edge reflection of Lamb waves contains rich information about the structure, and is a promising tool for the structural health monitoring (SHM) of composite laminates. However, related investigation on its applicability in orthotropic composite laminates are still limited. To address this issue, this paper presents a defect localization method based on multipath edge reflected Lamb waves, which can be used for the SHM of square carbon fiber reinforced plastics (CFRP) laminates that have orthotropic material properties. Firstly, the feasibility of using edge reflections to detect defects in orthotropic materials is analyzed, laying the foundation for the construction of a multipath model. A modified dispersion compensation algorithm is then developed based on the equivalent dispersion relations, so as to minimize the influence of the orthotropic property on the signal waveform. On the basis, a four-step implementation process of the detection method is established, including identifying edge reflected wave packets, tracking theoretical virtual wave paths, matching wave packets with virtual paths, and imaging the detection area by fusing images of multipath wave packets. Experiments on three different defect cases show that the method can localize the defect on orthotropic CFRP laminates accurately, even its position is near the edges. Compared with the widely-used delay-and-sum algorithm, the method also performs better in the presence of strong edge reflections, thus can be an efficient SHM tool for the orthotropic CFRP laminates of small sizes.</div></div>\",\"PeriodicalId\":18868,\"journal\":{\"name\":\"Ndt & E International\",\"volume\":\"155 \",\"pages\":\"Article 103413\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ndt & E International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0963869525000945\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869525000945","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

兰姆波的边缘反射包含了丰富的结构信息,是一种很有前途的复合材料层合板结构健康监测工具。然而,对其在正交异性复合材料层合板中的适用性的相关研究仍然有限。针对这一问题,本文提出了一种基于多径边缘反射Lamb波的缺陷定位方法,该方法可用于具有正交异性材料特性的方形碳纤维增强塑料(CFRP)层合板的SHM。首先,分析了利用边缘反射检测正交异性材料缺陷的可行性,为多路径模型的构建奠定了基础。基于等效色散关系,提出了一种改进的色散补偿算法,以减小正交异性对信号波形的影响。在此基础上,建立了检测方法的四步实现流程,包括边缘反射波包识别、理论虚波路径跟踪、波包与虚波路径匹配、多径波包图像融合成像检测区域。在三种不同缺陷情况下的实验表明,该方法可以准确定位正交异性碳纤维复合材料层合板上的缺陷,即使其位置接近边缘。与广泛使用的延迟和算法相比,该方法在强边缘反射情况下也具有更好的性能,因此可以作为小尺寸正交各向异性CFRP层合板的有效SHM工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge-reflected lamb wave exploitation for defect localization in square orthotropic CFRP laminates
The edge reflection of Lamb waves contains rich information about the structure, and is a promising tool for the structural health monitoring (SHM) of composite laminates. However, related investigation on its applicability in orthotropic composite laminates are still limited. To address this issue, this paper presents a defect localization method based on multipath edge reflected Lamb waves, which can be used for the SHM of square carbon fiber reinforced plastics (CFRP) laminates that have orthotropic material properties. Firstly, the feasibility of using edge reflections to detect defects in orthotropic materials is analyzed, laying the foundation for the construction of a multipath model. A modified dispersion compensation algorithm is then developed based on the equivalent dispersion relations, so as to minimize the influence of the orthotropic property on the signal waveform. On the basis, a four-step implementation process of the detection method is established, including identifying edge reflected wave packets, tracking theoretical virtual wave paths, matching wave packets with virtual paths, and imaging the detection area by fusing images of multipath wave packets. Experiments on three different defect cases show that the method can localize the defect on orthotropic CFRP laminates accurately, even its position is near the edges. Compared with the widely-used delay-and-sum algorithm, the method also performs better in the presence of strong edge reflections, thus can be an efficient SHM tool for the orthotropic CFRP laminates of small sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ndt & E International
Ndt & E International 工程技术-材料科学:表征与测试
CiteScore
7.20
自引率
9.50%
发文量
121
审稿时长
55 days
期刊介绍: NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信