{"title":"通过混合虚拟筛选管道、生物学评价和分子动力学模拟发现新的DDR1抑制剂","authors":"Xinglong Chi, Roufen Chen, Xinle Yang, Xinjun He, Zhichao Pan, Chenpeng Yao, Huilin Peng, Haiyan Yang*, Wenhai Huang* and Zhilu Chen*, ","doi":"10.1021/acsmedchemlett.4c0063410.1021/acsmedchemlett.4c00634","DOIUrl":null,"url":null,"abstract":"<p >Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy with limited therapeutic options for many patients. Discoidin domain receptor 1 (DDR1), a transmembrane tyrosine kinase receptor, has been implicated in AML progression and represents a promising therapeutic target. In this study, we employed a hybrid virtual screening workflow that integrates deep learning-based binding affinity predictions with molecular docking techniques to identify potential DDR1 inhibitors. A multistage screening process involving PSICHIC, KarmaDock, Vina-GPU, and similarity-based scoring was conducted, leading to the selection of seven candidate compounds. The biological evaluation identified Compound 4 as a novel DDR1 inhibitor, demonstrating significant DDR1 inhibitory activity with an IC<sub>50</sub> of 46.16 nM and a 99.86% inhibition rate against Z-138 cells at 10 μM. Molecular dynamics simulations and binding free energy calculations further validated the stability and strong binding interactions of Compound 4 with DDR1. This study highlights the utility of combining deep learning models with traditional molecular docking techniques to accelerate the discovery of potent and selective DDR1 inhibitors. The identified compounds hold promise for further development as targeted therapies for AML.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"16 4","pages":"602–610 602–610"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmedchemlett.4c00634","citationCount":"0","resultStr":"{\"title\":\"Discovery of Novel DDR1 Inhibitors through a Hybrid Virtual Screening Pipeline, Biological Evaluation and Molecular Dynamics Simulations\",\"authors\":\"Xinglong Chi, Roufen Chen, Xinle Yang, Xinjun He, Zhichao Pan, Chenpeng Yao, Huilin Peng, Haiyan Yang*, Wenhai Huang* and Zhilu Chen*, \",\"doi\":\"10.1021/acsmedchemlett.4c0063410.1021/acsmedchemlett.4c00634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy with limited therapeutic options for many patients. Discoidin domain receptor 1 (DDR1), a transmembrane tyrosine kinase receptor, has been implicated in AML progression and represents a promising therapeutic target. In this study, we employed a hybrid virtual screening workflow that integrates deep learning-based binding affinity predictions with molecular docking techniques to identify potential DDR1 inhibitors. A multistage screening process involving PSICHIC, KarmaDock, Vina-GPU, and similarity-based scoring was conducted, leading to the selection of seven candidate compounds. The biological evaluation identified Compound 4 as a novel DDR1 inhibitor, demonstrating significant DDR1 inhibitory activity with an IC<sub>50</sub> of 46.16 nM and a 99.86% inhibition rate against Z-138 cells at 10 μM. Molecular dynamics simulations and binding free energy calculations further validated the stability and strong binding interactions of Compound 4 with DDR1. This study highlights the utility of combining deep learning models with traditional molecular docking techniques to accelerate the discovery of potent and selective DDR1 inhibitors. The identified compounds hold promise for further development as targeted therapies for AML.</p>\",\"PeriodicalId\":20,\"journal\":{\"name\":\"ACS Medicinal Chemistry Letters\",\"volume\":\"16 4\",\"pages\":\"602–610 602–610\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsmedchemlett.4c00634\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Medicinal Chemistry Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmedchemlett.4c00634\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmedchemlett.4c00634","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Discovery of Novel DDR1 Inhibitors through a Hybrid Virtual Screening Pipeline, Biological Evaluation and Molecular Dynamics Simulations
Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy with limited therapeutic options for many patients. Discoidin domain receptor 1 (DDR1), a transmembrane tyrosine kinase receptor, has been implicated in AML progression and represents a promising therapeutic target. In this study, we employed a hybrid virtual screening workflow that integrates deep learning-based binding affinity predictions with molecular docking techniques to identify potential DDR1 inhibitors. A multistage screening process involving PSICHIC, KarmaDock, Vina-GPU, and similarity-based scoring was conducted, leading to the selection of seven candidate compounds. The biological evaluation identified Compound 4 as a novel DDR1 inhibitor, demonstrating significant DDR1 inhibitory activity with an IC50 of 46.16 nM and a 99.86% inhibition rate against Z-138 cells at 10 μM. Molecular dynamics simulations and binding free energy calculations further validated the stability and strong binding interactions of Compound 4 with DDR1. This study highlights the utility of combining deep learning models with traditional molecular docking techniques to accelerate the discovery of potent and selective DDR1 inhibitors. The identified compounds hold promise for further development as targeted therapies for AML.
期刊介绍:
ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to:
Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics)
Biological characterization of new molecular entities in the context of drug discovery
Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc.
Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry
Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources
Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response
Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic
Mechanistic drug metabolism and regulation of metabolic enzyme gene expression
Chemistry patents relevant to the medicinal chemistry field.