用于分离 H2S/CO2 的聚 4-甲基-1-戊烯 (PMP) 和 PMP/Calix[4]arene (PMP/CA) 的分子模拟

IF 4.5 2区 化学 Q2 POLYMER SCIENCE
Hua You , Xinlu Cheng , Hong Zhang
{"title":"用于分离 H2S/CO2 的聚 4-甲基-1-戊烯 (PMP) 和 PMP/Calix[4]arene (PMP/CA) 的分子模拟","authors":"Hua You ,&nbsp;Xinlu Cheng ,&nbsp;Hong Zhang","doi":"10.1016/j.polymer.2025.128288","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient separation of H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S and CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> is crucial for industrial applications. Poly-4-methyl-1-pentene (PMP) membranes, enhanced with Calix[4]arene (CA), show promise in improving separation performance. Herein, Molecular dynamics (MD) and Grand Canonical Monte Carlo (GCMC) simulations were used to systematically investigate the gas transport properties of H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S over PMP membranes, as well as the performance of mixed matrix membranes (MMMs) with varying CA contents (0–7.75 wt%) in H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S/CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> gas separation. The results indicate that while CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> exhibits a higher diffusion coefficient than H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S, it has a lower solubility coefficient and permeability coefficient, suggesting that the permeation process is predominantly governed by solubility. The incorporation of CA significantly enhances the H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S/CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> separation performance. Notably, the 7.75% CA-doped M5 system exhibits a 93.6% increase in separation factor (<span><math><mrow><mi>α</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>28</mn></mrow></math></span>) compared to pure PMP (<span><math><mrow><mi>α</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>21</mn></mrow></math></span>). In addition, CA doping significantly improves the thermal stability, with the glass transition temperature (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>) of M5 rising by 25%, and mechanical properties, as evidenced by a 12.4% increase in Young’s modulus. These findings highlight the dual role of CA in modifying both the thermodynamic and kinetic properties of PMP membranes. In summary, this study provides a theoretical basis for the application of PMP-based composite membranes in gas separation and important guidance for material optimization.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"327 ","pages":"Article 128288"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular simulations of Poly-4-methyl-1-pentene (PMP) and PMP/Calix[4]arene (PMP/CA) for H2S/CO2 separation\",\"authors\":\"Hua You ,&nbsp;Xinlu Cheng ,&nbsp;Hong Zhang\",\"doi\":\"10.1016/j.polymer.2025.128288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient separation of H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S and CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> is crucial for industrial applications. Poly-4-methyl-1-pentene (PMP) membranes, enhanced with Calix[4]arene (CA), show promise in improving separation performance. Herein, Molecular dynamics (MD) and Grand Canonical Monte Carlo (GCMC) simulations were used to systematically investigate the gas transport properties of H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S over PMP membranes, as well as the performance of mixed matrix membranes (MMMs) with varying CA contents (0–7.75 wt%) in H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S/CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> gas separation. The results indicate that while CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> exhibits a higher diffusion coefficient than H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S, it has a lower solubility coefficient and permeability coefficient, suggesting that the permeation process is predominantly governed by solubility. The incorporation of CA significantly enhances the H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S/CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> separation performance. Notably, the 7.75% CA-doped M5 system exhibits a 93.6% increase in separation factor (<span><math><mrow><mi>α</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>28</mn></mrow></math></span>) compared to pure PMP (<span><math><mrow><mi>α</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>21</mn></mrow></math></span>). In addition, CA doping significantly improves the thermal stability, with the glass transition temperature (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>) of M5 rising by 25%, and mechanical properties, as evidenced by a 12.4% increase in Young’s modulus. These findings highlight the dual role of CA in modifying both the thermodynamic and kinetic properties of PMP membranes. In summary, this study provides a theoretical basis for the application of PMP-based composite membranes in gas separation and important guidance for material optimization.</div></div>\",\"PeriodicalId\":405,\"journal\":{\"name\":\"Polymer\",\"volume\":\"327 \",\"pages\":\"Article 128288\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032386125002745\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386125002745","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

H22S和CO22的高效分离对于工业应用至关重要。聚4-甲基-1-戊烯(PMP)膜经杯状[4]芳烃(CA)增强后,在提高分离性能方面表现出良好的前景。本文采用分子动力学(MD)和大规范蒙特卡罗(GCMC)模拟系统地研究了H22S在PMP膜上的气体输运特性,以及不同CA含量(0-7.75 wt%)的混合基质膜(MMMs)在H22S/CO22气体分离中的性能。结果表明,CO22的扩散系数高于H22S,但其溶解度系数和渗透系数均低于H22S,说明溶解度主导渗透过程。CA的加入显著提高了H22S/CO22的分离性能。值得注意的是,与纯PMP (α=2.21α=2.21)相比,7.75% ca掺杂的M5体系的分离因子增加了93.6% (α=4.28α=4.28)。此外,CA掺杂显著提高了M5的热稳定性,玻璃化转变温度(TgTg)提高了25%,力学性能提高了12.4%,杨氏模量提高了12.4%。这些发现强调了CA在改变PMP膜的热力学和动力学性质方面的双重作用。综上所述,本研究为pmp基复合膜在气体分离中的应用提供了理论依据,对材料优化具有重要指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Molecular simulations of Poly-4-methyl-1-pentene (PMP) and PMP/Calix[4]arene (PMP/CA) for H2S/CO2 separation

Molecular simulations of Poly-4-methyl-1-pentene (PMP) and PMP/Calix[4]arene (PMP/CA) for H2S/CO2 separation

Molecular simulations of Poly-4-methyl-1-pentene (PMP) and PMP/Calix[4]arene (PMP/CA) for H2S/CO2 separation
Efficient separation of H2S and CO2 is crucial for industrial applications. Poly-4-methyl-1-pentene (PMP) membranes, enhanced with Calix[4]arene (CA), show promise in improving separation performance. Herein, Molecular dynamics (MD) and Grand Canonical Monte Carlo (GCMC) simulations were used to systematically investigate the gas transport properties of H2S over PMP membranes, as well as the performance of mixed matrix membranes (MMMs) with varying CA contents (0–7.75 wt%) in H2S/CO2 gas separation. The results indicate that while CO2 exhibits a higher diffusion coefficient than H2S, it has a lower solubility coefficient and permeability coefficient, suggesting that the permeation process is predominantly governed by solubility. The incorporation of CA significantly enhances the H2S/CO2 separation performance. Notably, the 7.75% CA-doped M5 system exhibits a 93.6% increase in separation factor (α=4.28) compared to pure PMP (α=2.21). In addition, CA doping significantly improves the thermal stability, with the glass transition temperature (Tg) of M5 rising by 25%, and mechanical properties, as evidenced by a 12.4% increase in Young’s modulus. These findings highlight the dual role of CA in modifying both the thermodynamic and kinetic properties of PMP membranes. In summary, this study provides a theoretical basis for the application of PMP-based composite membranes in gas separation and important guidance for material optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信