神经活动的基础模型预测对新刺激类型的反应

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2025-04-09 DOI:10.1038/s41586-025-08829-y
Eric Y. Wang, Paul G. Fahey, Zhuokun Ding, Stelios Papadopoulos, Kayla Ponder, Marissa A. Weis, Andersen Chang, Taliah Muhammad, Saumil Patel, Zhiwei Ding, Dat Tran, Jiakun Fu, Casey M. Schneider-Mizell, MICrONS Consortium, R. Clay Reid, Forrest Collman, Nuno Maçarico da Costa, Katrin Franke, Alexander S. Ecker, Jacob Reimer, Xaq Pitkow, Fabian H. Sinz, Andreas S. Tolias
{"title":"神经活动的基础模型预测对新刺激类型的反应","authors":"Eric Y. Wang, Paul G. Fahey, Zhuokun Ding, Stelios Papadopoulos, Kayla Ponder, Marissa A. Weis, Andersen Chang, Taliah Muhammad, Saumil Patel, Zhiwei Ding, Dat Tran, Jiakun Fu, Casey M. Schneider-Mizell, MICrONS Consortium, R. Clay Reid, Forrest Collman, Nuno Maçarico da Costa, Katrin Franke, Alexander S. Ecker, Jacob Reimer, Xaq Pitkow, Fabian H. Sinz, Andreas S. Tolias","doi":"10.1038/s41586-025-08829-y","DOIUrl":null,"url":null,"abstract":"The complexity of neural circuits makes it challenging to decipher the brain’s algorithms of intelligence. Recent breakthroughs in deep learning have produced models that accurately simulate brain activity, enhancing our understanding of the brain’s computational objectives and neural coding. However, it is difficult for such models to generalize beyond their training distribution, limiting their utility. The emergence of foundation models1 trained on vast datasets has introduced a new artificial intelligence paradigm with remarkable generalization capabilities. Here we collected large amounts of neural activity from visual cortices of multiple mice and trained a foundation model to accurately predict neuronal responses to arbitrary natural videos. This model generalized to new mice with minimal training and successfully predicted responses across various new stimulus domains, such as coherent motion and noise patterns. Beyond neural response prediction, the model also accurately predicted anatomical cell types, dendritic features and neuronal connectivity within the MICrONS functional connectomics dataset2. Our work is a crucial step towards building foundation models of the brain. As neuroscience accumulates larger, multimodal datasets, foundation models will reveal statistical regularities, enable rapid adaptation to new tasks and accelerate research. A foundation model trained on neural activity of visual cortex from multiple mice accurately predicts responses to video stimuli and cell types, dendritic features and connectivity within the MICrONS functional connectomics dataset.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"640 8058","pages":"470-477"},"PeriodicalIF":50.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41586-025-08829-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Foundation model of neural activity predicts response to new stimulus types\",\"authors\":\"Eric Y. Wang, Paul G. Fahey, Zhuokun Ding, Stelios Papadopoulos, Kayla Ponder, Marissa A. Weis, Andersen Chang, Taliah Muhammad, Saumil Patel, Zhiwei Ding, Dat Tran, Jiakun Fu, Casey M. Schneider-Mizell, MICrONS Consortium, R. Clay Reid, Forrest Collman, Nuno Maçarico da Costa, Katrin Franke, Alexander S. Ecker, Jacob Reimer, Xaq Pitkow, Fabian H. Sinz, Andreas S. Tolias\",\"doi\":\"10.1038/s41586-025-08829-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complexity of neural circuits makes it challenging to decipher the brain’s algorithms of intelligence. Recent breakthroughs in deep learning have produced models that accurately simulate brain activity, enhancing our understanding of the brain’s computational objectives and neural coding. However, it is difficult for such models to generalize beyond their training distribution, limiting their utility. The emergence of foundation models1 trained on vast datasets has introduced a new artificial intelligence paradigm with remarkable generalization capabilities. Here we collected large amounts of neural activity from visual cortices of multiple mice and trained a foundation model to accurately predict neuronal responses to arbitrary natural videos. This model generalized to new mice with minimal training and successfully predicted responses across various new stimulus domains, such as coherent motion and noise patterns. Beyond neural response prediction, the model also accurately predicted anatomical cell types, dendritic features and neuronal connectivity within the MICrONS functional connectomics dataset2. Our work is a crucial step towards building foundation models of the brain. As neuroscience accumulates larger, multimodal datasets, foundation models will reveal statistical regularities, enable rapid adaptation to new tasks and accelerate research. A foundation model trained on neural activity of visual cortex from multiple mice accurately predicts responses to video stimuli and cell types, dendritic features and connectivity within the MICrONS functional connectomics dataset.\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":\"640 8058\",\"pages\":\"470-477\"},\"PeriodicalIF\":50.5000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41586-025-08829-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.nature.com/articles/s41586-025-08829-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-025-08829-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

神经回路的复杂性使得破译大脑的智能算法具有挑战性。深度学习领域的最新突破产生了精确模拟大脑活动的模型,增强了我们对大脑计算目标和神经编码的理解。然而,这些模型很难泛化到它们的训练分布之外,限制了它们的实用性。在大量数据集上训练的基础模型1的出现,引入了一种具有显著泛化能力的新人工智能范式。在这里,我们从多个小鼠的视觉皮层收集了大量的神经活动,并训练了一个基础模型来准确预测神经元对任意自然视频的反应。该模型推广到训练最少的新小鼠,并成功预测了各种新刺激域的反应,如相干运动和噪声模式。除了神经反应预测,该模型还准确预测了MICrONS功能连接组数据中的解剖细胞类型、树突特征和神经元连接。我们的工作是朝着建立大脑基础模型迈出的关键一步。随着神经科学积累更大的多模态数据集,基础模型将揭示统计规律,使其能够快速适应新任务并加速研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Foundation model of neural activity predicts response to new stimulus types

Foundation model of neural activity predicts response to new stimulus types

Foundation model of neural activity predicts response to new stimulus types
The complexity of neural circuits makes it challenging to decipher the brain’s algorithms of intelligence. Recent breakthroughs in deep learning have produced models that accurately simulate brain activity, enhancing our understanding of the brain’s computational objectives and neural coding. However, it is difficult for such models to generalize beyond their training distribution, limiting their utility. The emergence of foundation models1 trained on vast datasets has introduced a new artificial intelligence paradigm with remarkable generalization capabilities. Here we collected large amounts of neural activity from visual cortices of multiple mice and trained a foundation model to accurately predict neuronal responses to arbitrary natural videos. This model generalized to new mice with minimal training and successfully predicted responses across various new stimulus domains, such as coherent motion and noise patterns. Beyond neural response prediction, the model also accurately predicted anatomical cell types, dendritic features and neuronal connectivity within the MICrONS functional connectomics dataset2. Our work is a crucial step towards building foundation models of the brain. As neuroscience accumulates larger, multimodal datasets, foundation models will reveal statistical regularities, enable rapid adaptation to new tasks and accelerate research. A foundation model trained on neural activity of visual cortex from multiple mice accurately predicts responses to video stimuli and cell types, dendritic features and connectivity within the MICrONS functional connectomics dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信