多约束策略构建多色磷光碳点

IF 4.7 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Yang Nan, Zhenzhen Li, Chao Li, Yulong Zhu, Xuejun Ma, Zhichao Zhu, Junhua Hu, Yongsheng Zhu, Guangsong Zheng, Jinyang Zhu
{"title":"多约束策略构建多色磷光碳点","authors":"Yang Nan, Zhenzhen Li, Chao Li, Yulong Zhu, Xuejun Ma, Zhichao Zhu, Junhua Hu, Yongsheng Zhu, Guangsong Zheng, Jinyang Zhu","doi":"10.1021/acs.inorgchem.5c00379","DOIUrl":null,"url":null,"abstract":"Organic room-temperature phosphorescence (RTP) materials are widely used in optoelectronics, biological imaging, and chemical sensing because of their long luminous lifetime and excellent signal-to-noise ratio. Although multicolor RTP systems show important potential for information encryption, spin–orbit coupling (SOC) weakening and exciton quenching caused by molecular motion and environmental factors limit stable triplet exciton generation, thereby reducing the quantum yield and brightness of RTP materials. In this study, we developed a novel carbon dot (CD) to effectively solve these problems using a multiconfinement system, demonstrating excitation-dependent multicolor RTP properties. The RTP of the synthesized CDs varies from green to orange under different excitation wavelengths, with a high photoluminescent quantum yield (54.22%) and RTP brightness (39.53 cd/m<sup>2</sup>). Through detailed experimental and theoretical studies, we found that these multicolor photoluminescence phenomena arise from the existence of multiple luminescence centers, which form complex network structures through hydrogen, covalent, and ionic bonds, thus effectively stabilizing triplet excitons and enhancing optical properties. In addition, the synthetic material shows application potential in the field of information encryption and anticounterfeiting, achieving dynamic information encryption and multicolor light display functions, improving information security and anticounterfeiting capabilities.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"59 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Multicolor Phosphorescent Carbon Dots via Multiple Confinement Strategies\",\"authors\":\"Yang Nan, Zhenzhen Li, Chao Li, Yulong Zhu, Xuejun Ma, Zhichao Zhu, Junhua Hu, Yongsheng Zhu, Guangsong Zheng, Jinyang Zhu\",\"doi\":\"10.1021/acs.inorgchem.5c00379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic room-temperature phosphorescence (RTP) materials are widely used in optoelectronics, biological imaging, and chemical sensing because of their long luminous lifetime and excellent signal-to-noise ratio. Although multicolor RTP systems show important potential for information encryption, spin–orbit coupling (SOC) weakening and exciton quenching caused by molecular motion and environmental factors limit stable triplet exciton generation, thereby reducing the quantum yield and brightness of RTP materials. In this study, we developed a novel carbon dot (CD) to effectively solve these problems using a multiconfinement system, demonstrating excitation-dependent multicolor RTP properties. The RTP of the synthesized CDs varies from green to orange under different excitation wavelengths, with a high photoluminescent quantum yield (54.22%) and RTP brightness (39.53 cd/m<sup>2</sup>). Through detailed experimental and theoretical studies, we found that these multicolor photoluminescence phenomena arise from the existence of multiple luminescence centers, which form complex network structures through hydrogen, covalent, and ionic bonds, thus effectively stabilizing triplet excitons and enhancing optical properties. In addition, the synthetic material shows application potential in the field of information encryption and anticounterfeiting, achieving dynamic information encryption and multicolor light display functions, improving information security and anticounterfeiting capabilities.\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.inorgchem.5c00379\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.5c00379","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

有机室温磷光材料以其较长的发光寿命和优良的信噪比在光电子学、生物成像、化学传感等领域得到了广泛的应用。虽然多色RTP系统在信息加密方面具有重要的潜力,但由于分子运动和环境因素导致的自旋轨道耦合(SOC)减弱和激子猝灭限制了稳定的三重态激子的产生,从而降低了RTP材料的量子产率和亮度。在这项研究中,我们开发了一种新的碳点(CD),利用多约束系统有效地解决了这些问题,展示了激发依赖的多色RTP特性。合成的CDs在不同激发波长下的RTP从绿色到橙色变化,具有较高的光致发光量子产率(54.22%)和RTP亮度(39.53 cd/m2)。通过详细的实验和理论研究,我们发现这些多色光致发光现象源于多个发光中心的存在,这些发光中心通过氢键、共价键和离子键形成复杂的网络结构,从而有效地稳定了三重态激子,增强了光学性能。此外,该合成材料在信息加密和防伪领域显示出应用潜力,实现动态信息加密和多色光显示功能,提高信息安全和防伪能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Construction of Multicolor Phosphorescent Carbon Dots via Multiple Confinement Strategies

Construction of Multicolor Phosphorescent Carbon Dots via Multiple Confinement Strategies
Organic room-temperature phosphorescence (RTP) materials are widely used in optoelectronics, biological imaging, and chemical sensing because of their long luminous lifetime and excellent signal-to-noise ratio. Although multicolor RTP systems show important potential for information encryption, spin–orbit coupling (SOC) weakening and exciton quenching caused by molecular motion and environmental factors limit stable triplet exciton generation, thereby reducing the quantum yield and brightness of RTP materials. In this study, we developed a novel carbon dot (CD) to effectively solve these problems using a multiconfinement system, demonstrating excitation-dependent multicolor RTP properties. The RTP of the synthesized CDs varies from green to orange under different excitation wavelengths, with a high photoluminescent quantum yield (54.22%) and RTP brightness (39.53 cd/m2). Through detailed experimental and theoretical studies, we found that these multicolor photoluminescence phenomena arise from the existence of multiple luminescence centers, which form complex network structures through hydrogen, covalent, and ionic bonds, thus effectively stabilizing triplet excitons and enhancing optical properties. In addition, the synthetic material shows application potential in the field of information encryption and anticounterfeiting, achieving dynamic information encryption and multicolor light display functions, improving information security and anticounterfeiting capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信