揭示了碳化硼晶体在室温下的高延展性

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Penghui Li, Jun Li, Qilong Feng, Tianye Jin, Yeqiang Bu, Chong Wang, Kun Luo, Shoucong Ning, Bo Xu, Yihan Zhu, Qi An, Hongtao Wang, Anmin Nie, Yongjun Tian
{"title":"揭示了碳化硼晶体在室温下的高延展性","authors":"Penghui Li,&nbsp;Jun Li,&nbsp;Qilong Feng,&nbsp;Tianye Jin,&nbsp;Yeqiang Bu,&nbsp;Chong Wang,&nbsp;Kun Luo,&nbsp;Shoucong Ning,&nbsp;Bo Xu,&nbsp;Yihan Zhu,&nbsp;Qi An,&nbsp;Hongtao Wang,&nbsp;Anmin Nie,&nbsp;Yongjun Tian","doi":"10.1126/sciadv.adr4648","DOIUrl":null,"url":null,"abstract":"<div >Ductility is critical for preventing materials catastrophic fracture. However, achieving tensile ductility in covalent materials remains challenging and unexplored because of the strong, directional covalent bonds. Here, we unveiled the remarkable tensile ductility driven by vacancies in boron carbide (B<sub>4</sub>C). Using advanced electron ptychography techniques, we identified the presence of carbon-vacancy-carbon chains with boron vacancies in B<sub>4</sub>C lattice. The fabricated B<sub>4</sub>C beams exhibit a high ductility (~26.8%) at room temperature, a characteristic previously unattained in covalent materials and comparable to metals. In situ high-resolution transmission electron microscopy revealed that the formation of local amorphous regions after B<sub>4</sub>C lattice exceeded its elastic strain limit, causing plastic deformation. Atomistic simulations, using experimentally observed B<sub>4</sub>C models, reveal that the creation of carbon-carbon bonds in chains containing boron vacancies causes localized amorphization and contributes to the plastic deformation. This research highlights the significance of vacancies in facilitating plastic deformation in B<sub>4</sub>C and suggests a potential strategy to improve the ductility of strong covalent materials.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 15","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adr4648","citationCount":"0","resultStr":"{\"title\":\"Unveiling high ductility in boron carbide crystal at room temperature\",\"authors\":\"Penghui Li,&nbsp;Jun Li,&nbsp;Qilong Feng,&nbsp;Tianye Jin,&nbsp;Yeqiang Bu,&nbsp;Chong Wang,&nbsp;Kun Luo,&nbsp;Shoucong Ning,&nbsp;Bo Xu,&nbsp;Yihan Zhu,&nbsp;Qi An,&nbsp;Hongtao Wang,&nbsp;Anmin Nie,&nbsp;Yongjun Tian\",\"doi\":\"10.1126/sciadv.adr4648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Ductility is critical for preventing materials catastrophic fracture. However, achieving tensile ductility in covalent materials remains challenging and unexplored because of the strong, directional covalent bonds. Here, we unveiled the remarkable tensile ductility driven by vacancies in boron carbide (B<sub>4</sub>C). Using advanced electron ptychography techniques, we identified the presence of carbon-vacancy-carbon chains with boron vacancies in B<sub>4</sub>C lattice. The fabricated B<sub>4</sub>C beams exhibit a high ductility (~26.8%) at room temperature, a characteristic previously unattained in covalent materials and comparable to metals. In situ high-resolution transmission electron microscopy revealed that the formation of local amorphous regions after B<sub>4</sub>C lattice exceeded its elastic strain limit, causing plastic deformation. Atomistic simulations, using experimentally observed B<sub>4</sub>C models, reveal that the creation of carbon-carbon bonds in chains containing boron vacancies causes localized amorphization and contributes to the plastic deformation. This research highlights the significance of vacancies in facilitating plastic deformation in B<sub>4</sub>C and suggests a potential strategy to improve the ductility of strong covalent materials.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 15\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adr4648\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adr4648\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adr4648","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

延展性是防止材料灾难性断裂的关键。然而,由于强大的、定向的共价键,在共价材料中实现拉伸延展性仍然具有挑战性和未被探索。在这里,我们揭示了碳化硼(b4c)中空位驱动的显著拉伸延展性。使用先进的电子平面技术,我们确定了b4c晶格中含有硼空位的碳-空位碳链的存在。制备的b4c梁在室温下表现出高延展性(~26.8%),这是共价材料中以前未达到的特性,可与金属相媲美。原位高分辨率透射电镜显示,b4c晶格超过弹性应变极限后形成局部非晶态区,引起塑性变形。原子模拟,利用实验观察到的b4c模型,揭示了在含有硼空位的链中产生碳-碳键导致局部非晶化,并有助于塑性变形。本研究强调了空位在促进b4c塑性变形中的重要性,并提出了提高强共价材料延性的潜在策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unveiling high ductility in boron carbide crystal at room temperature

Unveiling high ductility in boron carbide crystal at room temperature
Ductility is critical for preventing materials catastrophic fracture. However, achieving tensile ductility in covalent materials remains challenging and unexplored because of the strong, directional covalent bonds. Here, we unveiled the remarkable tensile ductility driven by vacancies in boron carbide (B4C). Using advanced electron ptychography techniques, we identified the presence of carbon-vacancy-carbon chains with boron vacancies in B4C lattice. The fabricated B4C beams exhibit a high ductility (~26.8%) at room temperature, a characteristic previously unattained in covalent materials and comparable to metals. In situ high-resolution transmission electron microscopy revealed that the formation of local amorphous regions after B4C lattice exceeded its elastic strain limit, causing plastic deformation. Atomistic simulations, using experimentally observed B4C models, reveal that the creation of carbon-carbon bonds in chains containing boron vacancies causes localized amorphization and contributes to the plastic deformation. This research highlights the significance of vacancies in facilitating plastic deformation in B4C and suggests a potential strategy to improve the ductility of strong covalent materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信