高效太阳能电池用CsPbI3钙钛矿量子点的表面应力工程

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-04-09 DOI:10.1002/smll.202500007
Xinyi Mei, Guoliang Wang, Junming Qiu, Ziwei Qi, Mingxu Zhang, Mei Yu, Jianhua Liu, Xiaoliang Zhang
{"title":"高效太阳能电池用CsPbI3钙钛矿量子点的表面应力工程","authors":"Xinyi Mei,&nbsp;Guoliang Wang,&nbsp;Junming Qiu,&nbsp;Ziwei Qi,&nbsp;Mingxu Zhang,&nbsp;Mei Yu,&nbsp;Jianhua Liu,&nbsp;Xiaoliang Zhang","doi":"10.1002/smll.202500007","DOIUrl":null,"url":null,"abstract":"<p>Inorganic CsPbI<sub>3</sub> perovskite quantum dots (PQDs) demonstrate high potential for new-generation photovoltaics, but the imbalanced surface stress of PQDs induced by ligand deficiency and incompatibility significantly deteriorates their optoelectronic properties and phase stability, restricting their photovoltaic performance. Herein, a surface lattice regularization strategy is proposed for the surface stress engineering of PQDs, in which a series of onium cations with appropriate dimensions and good affinity with the surface lattice of PQDs are introduced into the surface lattice of PQDs, resulting in substantially ameliorated optoelectronic properties and phase stability of PQDs. Meanwhile, with surface stress engineering, the PQD solid with enhanced stacking orientation is constructed, facilitating charge carrier transport. Consequently, the PQD solar cell with an efficiency of up to 17.01% is obtained, which is one of the highest values of inorganic PQD solar cells. Such a strategy provides feasible access to maximize the optoelectronic properties of PQDs for high-performance optoelectronics.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 22","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Stress Engineering of CsPbI3 Perovskite Quantum Dots for Efficient Solar Cells\",\"authors\":\"Xinyi Mei,&nbsp;Guoliang Wang,&nbsp;Junming Qiu,&nbsp;Ziwei Qi,&nbsp;Mingxu Zhang,&nbsp;Mei Yu,&nbsp;Jianhua Liu,&nbsp;Xiaoliang Zhang\",\"doi\":\"10.1002/smll.202500007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inorganic CsPbI<sub>3</sub> perovskite quantum dots (PQDs) demonstrate high potential for new-generation photovoltaics, but the imbalanced surface stress of PQDs induced by ligand deficiency and incompatibility significantly deteriorates their optoelectronic properties and phase stability, restricting their photovoltaic performance. Herein, a surface lattice regularization strategy is proposed for the surface stress engineering of PQDs, in which a series of onium cations with appropriate dimensions and good affinity with the surface lattice of PQDs are introduced into the surface lattice of PQDs, resulting in substantially ameliorated optoelectronic properties and phase stability of PQDs. Meanwhile, with surface stress engineering, the PQD solid with enhanced stacking orientation is constructed, facilitating charge carrier transport. Consequently, the PQD solar cell with an efficiency of up to 17.01% is obtained, which is one of the highest values of inorganic PQD solar cells. Such a strategy provides feasible access to maximize the optoelectronic properties of PQDs for high-performance optoelectronics.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 22\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202500007\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202500007","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

无机CsPbI3钙钛矿量子点(PQDs)在新一代光伏材料中表现出很大的潜力,但由于配体缺乏和不相容导致的PQDs表面应力不平衡严重恶化了其光电性能和相稳定性,限制了其光伏性能。本文提出了一种用于PQDs表面应力工程的表面点阵正则化策略,即在PQDs表面点阵中引入一系列尺寸合适且与PQDs表面点阵亲和性好的离子,从而大大改善了PQDs的光电性能和相稳定性。同时,通过表面应力工程,构建了具有增强堆积取向的PQD固体,有利于载流子的输运。从而获得了效率高达17.01%的PQD太阳能电池,这是无机PQD太阳能电池的最高值之一。这种策略为高性能光电子器件提供了最大化pqd光电性能的可行途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Surface Stress Engineering of CsPbI3 Perovskite Quantum Dots for Efficient Solar Cells

Surface Stress Engineering of CsPbI3 Perovskite Quantum Dots for Efficient Solar Cells

Surface Stress Engineering of CsPbI3 Perovskite Quantum Dots for Efficient Solar Cells

Inorganic CsPbI3 perovskite quantum dots (PQDs) demonstrate high potential for new-generation photovoltaics, but the imbalanced surface stress of PQDs induced by ligand deficiency and incompatibility significantly deteriorates their optoelectronic properties and phase stability, restricting their photovoltaic performance. Herein, a surface lattice regularization strategy is proposed for the surface stress engineering of PQDs, in which a series of onium cations with appropriate dimensions and good affinity with the surface lattice of PQDs are introduced into the surface lattice of PQDs, resulting in substantially ameliorated optoelectronic properties and phase stability of PQDs. Meanwhile, with surface stress engineering, the PQD solid with enhanced stacking orientation is constructed, facilitating charge carrier transport. Consequently, the PQD solar cell with an efficiency of up to 17.01% is obtained, which is one of the highest values of inorganic PQD solar cells. Such a strategy provides feasible access to maximize the optoelectronic properties of PQDs for high-performance optoelectronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信